Search Results

 

DateTitleProvider
2017

Allegheny County - Contours 2017

Lidar Data Products for the Allegheny County, PA collection area including a 6ft DEM, hydrogrpahic breakines, and tiled 2ft Contours. The lidar dataset was collected to be utilized for the creation of a digital elevation model, hydrographic breaklines, and 2ft contours. Other uses expected.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Allegheny County
2010

Allegheny County - Urban Tree Canopy

Allegheny County Urban Tree Canopy. High resolution land cover dataset for Allegheny County, Pennsylvania.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2010

Allegheny County Imagery 2010

Orthophotos of Allegheny County, Pennsylvania - An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Aerial survey of Allegheny County,Pennsylvania. Orthophotos serve a variety of purposes, from interim maps to field references for earth science investigations and analysis. The digital orthophoto is useful as a layer of a geographic information system and as a tool for revision of digital line graphs and topographic maps.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2010

Allegheny County Imagery 2010 - Tile Index

Tile Index - Orthophotos of Allegheny County, Pennsylvania - An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Aerial survey of Allegheny County,Pennsylvania. Orthophotos serve a variety of purposes, from interim maps to field references for earth science investigations and analysis. The digital orthophoto is useful as a layer of a geographic information system and as a tool for revision of digital line graphs and topographic maps.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Allegheny County
2013

Allegheny County Imagery 2013

Orthophotos of Allegheny County, Pennsylvania - An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Aerial survey of Allegheny County,Pennsylvania. Orthophotos serve a variety of purposes, from interim maps to field references for earth science investigations and analysis. The digital orthophoto is useful as a layer of a geographic information system and as a tool for revision of digital line graphs and topographic maps.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2013

Allegheny County Imagery 2013 - Tile Index

Orthophotos of Allegheny County, Pennsylvania - An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Aerial survey of Allegheny County,Pennsylvania. Orthophotos serve a variety of purposes, from interim maps to field references for earth science investigations and analysis. The digital orthophoto is useful as a layer of a geographic information system and as a tool for revision of digital line graphs and topographic maps.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Allegheny County
2015

Allegheny County Imagery 2015

Orthophotos of Allegheny County, Pennsylvania - An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Aerial survey of Allegheny County,Pennsylvania. Orthophotos serve a variety of purposes, from interim maps to field references for earth science investigations and analysis. The digital orthophoto is useful as a layer of a geographic information system and as a tool for revision of digital line graphs and topographic maps.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2015

Allegheny County Imagery 2015 - Tile Index

Tile Index - Orthophotos of Allegheny County, Pennsylvania - An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Aerial survey of Allegheny County,Pennsylvania. Orthophotos serve a variety of purposes, from interim maps to field references for earth science investigations and analysis. The digital orthophoto is useful as a layer of a geographic information system and as a tool for revision of digital line graphs and topographic maps.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2017

Allegheny County Imagery 2017 - 3 inch pixels

Orthophotos of Allegheny County, Pennsylvania - An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Aerial survey of Allegheny County,Pennsylvania. Orthophotos serve a variety of purposes, from interim maps to field references for earth science investigations and analysis. The digital orthophoto is useful as a layer of a geographic information system and as a tool for revision of digital line graphs and topographic maps.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2017

Allegheny County Imagery 2017 - 9 inch pixels

Orthophotos of Allegheny County, Pennsylvania - An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Aerial survey of Allegheny County,Pennsylvania. Orthophotos serve a variety of purposes, from interim maps to field references for earth science investigations and analysis. The digital orthophoto is useful as a layer of a geographic information system and as a tool for revision of digital line graphs and topographic maps.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2017

Allegheny County Imagery 2017 3 inch - Tile Index

Tile Index - Orthophotos of Allegheny County, Pennsylvania - An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Aerial survey of Allegheny County,Pennsylvania. Orthophotos serve a variety of purposes, from interim maps to field references for earth science investigations and analysis. The digital orthophoto is useful as a layer of a geographic information system and as a tool for revision of digital line graphs and topographic maps.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2017

Allegheny County Imagery 2017 9 inch - Tile Index

Tile Index - Orthophotos of Allegheny County, Pennsylvania - An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Aerial survey of Allegheny County,Pennsylvania. Orthophotos serve a variety of purposes, from interim maps to field references for earth science investigations and analysis. The digital orthophoto is useful as a layer of a geographic information system and as a tool for revision of digital line graphs and topographic maps.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2017

Allegheny County LiDAR 2017 - DEM 6ft

Lidar Data Products for the Allegheny County, PA collection area including a 6ft DEM, hydrogrpahic breakines, and tiled 2ft Contours. The lidar dataset was collected to be utilized for the creation of a digital elevation model, hydrographic breaklines, and 2ft contours. Other uses expected.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2017

Allegheny County LiDAR 2017 - Hillshade 6ft

Lidar Data Products for the Allegheny County, PA collection area including a 6ft DEM, hydrogrpahic breakines, and tiled 2ft Contours. The lidar dataset was collected to be utilized for the creation of a digital elevation model, hydrographic breaklines, and 2ft contours. Other uses expected.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2017

Allegheny County LiDAR 2017 - las files

Lidar Data Products for the Allegheny County, PA collection area including a 6ft DEM, hydrogrpahic breakines, and tiled 2ft Contours. The lidar dataset was collected to be utilized for the creation of a digital elevation model, hydrographic breaklines, and 2ft contours. Other uses expected.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Allegheny County
2017

Allegheny County LiDAR 2017 - Tile Index

Tile Index - Lidar Data Products for the Allegheny County, PA collection area including a 6ft DEM, hydrogrpahic breakines, and tiled 2ft Contours. The lidar dataset was collected to be utilized for the creation of a digital elevation model, hydrographic breaklines, and 2ft contours. Other uses expected.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2017

Allegheny County LiDAR 2017 - Terrain

Lidar Data Products for the Allegheny County, PA collection area including a 6ft DEM, hydrogrpahic breakines, and tiled 2ft Contours. The lidar dataset was collected to be utilized for the creation of a digital elevation model, hydrographic breaklines, and 2ft contours. Other uses expected.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2015

Allegheny County/Pittsburgh LiDAR 2015 - Tile Index

Lidar Data Products for the Allegheny County, PA collection area including a 6ft DEM, hydrogrpahic breakines, and tiled 2ft Contours. The lidar dataset was collected to be utilized for the creation of a digital elevation model, hydrographic breaklines, and 2ft contours. Other uses expected.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2015

Allegheny County/Pittsburgh LiDAR 2015 - DEM 6ft

Lidar Data Products for the Allegheny County, PA collection area including a 6ft DEM, hydrogrpahic breakines, and tiled 2ft Contours. The lidar dataset was collected to be utilized for the creation of a digital elevation model, hydrographic breaklines, and 2ft contours. Other uses expected.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2015

Allegheny County/Pittsburgh LiDAR 2015 - Hillshade 6ft

Lidar Data Products for the Allegheny County, PA collection area including a 6ft DEM, hydrogrpahic breakines, and tiled 2ft Contours. The lidar dataset was collected to be utilized for the creation of a digital elevation model, hydrographic breaklines, and 2ft contours. Other uses expected.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2015

Allegheny County/Pittsburgh LiDAR 2015 - Terrain

Lidar Data Products for the Allegheny County, PA collection area including a 6ft DEM, hydrogrpahic breakines, and tiled 2ft Contours. The lidar dataset was collected to be utilized for the creation of a digital elevation model, hydrographic breaklines, and 2ft contours. Other uses expected.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Allegheny County
2003

Cambria County Imagery 2003

A collection of imagery over Cambria County PA from the year 2003. This image catalog spans years of aerial photography and digital ortho photo production generated for Cambria County Pennsylvania. Project year and criteria, available technology, and service providers are factors in the difference of products provided in this archive. While project deliverables seek to provide consistent and spatially accurate results Cambria County nor any of the service providers or agencies providing access to this catalog can be held liable for misuse or misinterpretation of the images. These images are provided for reference only.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Cambria County
2006

Cambria County Imagery 2006

A collection of imagery over Cambria County PA from the year 2006. This image catalog spans years of aerial photography and digital ortho photo production generated for Cambria County Pennsylvania. Project year and criteria, available technology, and service providers are factors in the difference of products provided in this archive. While project deliverables seek to provide consistent and spatially accurate results Cambria County nor any of the service providers or agencies providing access to this catalog can be held liable for misuse or misinterpretation of the images. These images are provided for reference only.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Cambria County
2009

Cambria County Imagery 2009

A collection of imagery over Cambria County PA from the year 2009. This image catalog spans years of aerial photography and digital ortho photo production generated for Cambria County Pennsylvania. Project year and criteria, available technology, and service providers are factors in the difference of products provided in this archive. While project deliverables seek to provide consistent and spatially accurate results Cambria County nor any of the service providers or agencies providing access to this catalog can be held liable for misuse or misinterpretation of the images. These images are provided for reference only.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Cambria County
2017

Cambria County Imagery 2017

A collection of imagery over Cambria County PA from the year 2017. This image catalog spans years of aerial photography and digital ortho photo production generated for Cambria County Pennsylvania. Project year and criteria, available technology, and service providers are factors in the difference of products provided in this archive. While project deliverables seek to provide consistent and spatially accurate results Cambria County nor any of the service providers or agencies providing access to this catalog can be held liable for misuse or misinterpretation of the images. These images are provided for reference only.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Cambria County
2018

Cambria County Imagery 2018

A collection of imagery over Cambria County PA from the year 2018. This image catalog spans years of aerial photography and digital ortho photo production generated for Cambria County Pennsylvania. Project year and criteria, available technology, and service providers are factors in the difference of products provided in this archive. While project deliverables seek to provide consistent and spatially accurate results Cambria County nor any of the service providers or agencies providing access to this catalog can be held liable for misuse or misinterpretation of the images. These images are provided for reference only.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Cambria County
2018

Centre County Historical Aerials 1938

Centre County Aerials 1938 from the Penn Pilot Program

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Centre County
2018

Centre County Historical Aerials 1957

Centre County Aerials 1957 from the Penn Pilot Program

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Centre County
2018

Centre County Historical Aerials 1971

Centre County Aerials 1971 from the Penn Pilot Program

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Centre County
1996

Philadelphia Aerial Photography 1996

Philadelphia aerial photography

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
1996

Philadelphia Aerial Photography 1996 - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2000

Philadelphia Aerial Photography 2000

Philadelphia aerial photography

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2000

Philadelphia Aerial Photography 2000 - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2004

Philadelphia Aerial Photography 2004

Philadelphia aerial photography

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2004

Philadelphia Aerial Photography 2004 - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2005

Philadelphia Aerial Photography 2005

Philadelphia aerial photography

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2005

Philadelphia Aerial Photography 2005 - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2008

Philadelphia Aerial Photography 2008

Philadelphia aerial photography

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2008

Philadelphia Aerial Photography 2008 - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2009

Philadelphia Aerial Photography 2009

Philadelphia aerial photography

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2009

Philadelphia Aerial Photography 2009 - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2010

Philadelphia Aerial Photography 2010

Philadelphia aerial photography

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2010

Philadelphia Aerial Photography 2010 - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2011

Philadelphia Aerial Photography 2011

Philadelphia aerial photography

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2011

Philadelphia Aerial Photography 2011 - Leaf On

Philadelphia aerial photography - Leaf On

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2011

Philadelphia Aerial Photography 2011 - Leaf On - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2011

Philadelphia Aerial Photography 2011 - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2012

Philadelphia Aerial Photography 2012

Philadelphia aerial photography

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2012

Philadelphia Aerial Photography 2012 - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2014

Philadelphia Aerial Photography 2014

Philadelphia aerial photography

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2014

Philadelphia Aerial Photography 2014 - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2015

Philadelphia Aerial Photography 2015

Philadelphia aerial photography

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2015

Philadelphia Aerial Photography 2015 - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2016

Philadelphia Aerial Photography 2016 1m

Philadelphia aerial photography

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2016

Philadelphia Aerial Photography 2016 1m - Tile Index

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2016

Philadelphia Aerial Photography 2016 3in

Philadelphia aerial photography

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2016

Philadelphia Aerial Photography 2016 3in - tile Index

Philadelphia aerial photography 3 inch pixels tile index. The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2017

Philadelphia Aerial Photography 2017 - Mosaics

Philadelphia aerial photography city wide mosaic. The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2017

Philadelphia Aerial Photography 2017 1m

Philadelphia aerial photography 1 meter pixels. The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2017

Philadelphia Aerial Photography 2017 1m - tile index

Philadelphia aerial photography 1 meter pixels tile index. The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2017

Philadelphia Aerial Photography 2017 3in

Philadelphia aerial photography 3 inch pixels. The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2017

Philadelphia Aerial Photography 2017 3in - tile index

Philadelphia aerial photography 3 inch pixels tile index. The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2018

Philadelphia Aerial Photography 2018

Color Citywide digital orthophotography with a ground resolution of at various resolutions, georeferenced to the Pennsylvania State Plane Coordinate System, and delivered as individual and mosaicked raster images. The dataset consists of tiled orthogonal imagery produced from nadir images captured by various contractors during the months of April and May.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2018

Philadelphia Aerial Photography 2018 - tile index

Tile Index - Color Citywide digital orthophotography with a ground resolution of at various resolutions, georeferenced to the Pennsylvania State Plane Coordinate System, and delivered as individual and mosaicked raster images. The dataset consists of tiled orthogonal imagery produced from nadir images captured by various contractors during the months of April and May.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2019

Philadelphia Aerial Photography 2019

Color Citywide digital orthophotography with a ground resolution of at various resolutions, georeferenced to the Pennsylvania State Plane Coordinate System, and delivered as individual and mosaicked raster images. The dataset consists of tiled orthogonal imagery produced from nadir images captured by various contractors during the months of April and May.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2019

Philadelphia Aerial Photography 2019 - tile index

Color Citywide digital orthophotography with a ground resolution of at various resolutions, georeferenced to the Pennsylvania State Plane Coordinate System, and delivered as individual and mosaicked raster images. The dataset consists of tiled orthogonal imagery produced from nadir images captured by various contractors during the months of April and May.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2020

Philadelphia Aerial Photography 2020

Color Citywide digital orthophotography with a ground resolution of at various resolutions, georeferenced to the Pennsylvania State Plane Coordinate System, and delivered as individual and mosaicked raster images. The dataset consists of tiled orthogonal imagery produced from nadir images captured by various contractors during the months of April and May.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

City of Philadelphia
2020

Philadelphia Aerial Photography 2020 - tile index

Color Citywide digital orthophotography with a ground resolution of at various resolutions, georeferenced to the Pennsylvania State Plane Coordinate System, and delivered as individual and mosaicked raster images. The dataset consists of tiled orthogonal imagery produced from nadir images captured by various contractors during the months of April and May.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2022

Philadelphia Aerial Photography 2022

Color Citywide digital orthophotography with a ground resolution of at various resolutions, georeferenced to the Pennsylvania State Plane Coordinate System, and delivered as individual and mosaicked raster images. The dataset consists of tiled orthogonal imagery produced from nadir images captured by various contractors during the months of April and May.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2022

Philadelphia Aerial Photography 2022 - tile index

Color Citywide digital orthophotography with a ground resolution of at various resolutions, georeferenced to the Pennsylvania State Plane Coordinate System, and delivered as individual and mosaicked raster images. The dataset consists of tiled orthogonal imagery produced from nadir images captured by various contractors during the months of April and May.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

City of Philadelphia
2008

Philadelphia Building 3D Models 2008

Files used to comprise a 3D building model of the City of Philadelphia

Metadata | Download | More Options...

City of Philadelphia
2010

Philadelphia Building 3D Models 2010

Files used to comprise a 3D building model of the City of Philadelphia

Metadata | Download | More Options...

City of Philadelphia
2015

Philadelphia Building 3D Models 2015

Files used to comprise a 3D building model of the City of Philadelphia

Metadata | Download | More Options...

City of Philadelphia
2011

PAMAP Spatial Energy Imagery

Half meter GSD represented in Geographic Decimal Degrees, natural color (RGB), 8-bit per band digital orthophotography for approximately 14,035 square miles in Pennsylvania. The imagery was collected using the Leica Geosystems ADS40-SH51 during Fall, 2010 and Spring, 2011 at an average altitude of 4,800 meters above ground level. An auto correlated elevation model was used as vertical control. Airborne GPS/IMU was used as a basis for Analytical Aerial Triangulation (AT). Following rectification of imagery, manually placed seamlines were used to mosaic into a seamless coverage. The orthophotography is georeferenced to Geographic NAD83 decimal degrees.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

DCNR PAMAP Program
2011

PAMAP Spatial Energy Imagery - Tile Index

Tile Index - Half meter GSD represented in Geographic Decimal Degrees, natural color (RGB), 8-bit per band digital orthophotography for approximately 14,035 square miles in Pennsylvania. The imagery was collected using the Leica Geosystems ADS40-SH51 during Fall, 2010 and Spring, 2011 at an average altitude of 4,800 meters above ground level. An auto correlated elevation model was used as vertical control. Airborne GPS/IMU was used as a basis for Analytical Aerial Triangulation (AT). Following rectification of imagery, manually placed seamlines were used to mosaic into a seamless coverage. The orthophotography is georeferenced to Geographic NAD83 decimal degrees.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

DCNR PAMAP Program
2010

PAMAP iCubed Imagery

(2010) Pennsylvania area natural color seamless orthoimagery acquired by Aerials Express at a 45cm pixel-resolution. Flight operations began on 12/11/09 and ended on 04/10/10 using an (DMC) camera with an approximate forward overlap of 60% and side overlap of 30% with an approximate Ground Sample Distance of (44 cm). The dataset is projected as Universal Transverse Mercator (UTM) 17 on the North American Datum of 1983. The PAMAP Program LiDAR Data of Pennsylvania; West Virginia Statewide Digital Elevation Models; USGS National Elevation Dataset (NED) - (Used in the respective sequential order) were utilized as the Digital Elevation Model in ortho-processing.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

DCNR PAMAP Program
2010

PAMAP iCubed Imagery - Tile Index North

TILE INDEX North - (2010) Pennsylvania area natural color seamless orthoimagery acquired by Aerials Express at a 45cm pixel-resolution. Flight operations began on 12/11/09 and ended on 04/10/10 using an (DMC) camera with an approximate forward overlap of 60% and side overlap of 30% with an approximate Ground Sample Distance of (44 cm). The dataset is projected as Universal Transverse Mercator (UTM) 17 on the North American Datum of 1983. The PAMAP Program LiDAR Data of Pennsylvania; West Virginia Statewide Digital Elevation Models; USGS National Elevation Dataset (NED) - (Used in the respective sequential order) were utilized as the Digital Elevation Model in ortho-processing.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

DCNR PAMAP Program
2010

PAMAP iCubed Imagery - Tile Index South

TILE INDEX South - (2010) Pennsylvania area natural color seamless orthoimagery acquired by Aerials Express at a 45cm pixel-resolution. Flight operations began on 12/11/09 and ended on 04/10/10 using an (DMC) camera with an approximate forward overlap of 60% and side overlap of 30% with an approximate Ground Sample Distance of (44 cm). The dataset is projected as Universal Transverse Mercator (UTM) 17 on the North American Datum of 1983. The PAMAP Program LiDAR Data of Pennsylvania; West Virginia Statewide Digital Elevation Models; USGS National Elevation Dataset (NED) - (Used in the respective sequential order) were utilized as the Digital Elevation Model in ortho-processing.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

DCNR PAMAP Program
2003 - 2006

PAMAP Program - Color Orthophotos Cycle 1

Orthoimagery for south-central Pennsylvania captured in April of 2003. An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. For this dataset, the natural color orthoimages were produced at 2-feet pixel resolution. The design accuracy is estimated not to exceed 4.8 feet at the 95% confidence level. Each orthoimage provides imagery for a 10,000 by 10,000 feet block on the ground. The projected coordinate system is Pennsylvania State Plane with a NAD83 datum. There is no image overlap been adjacent files. The ortho image filenames were derived from the northwest corner of each ortho tile using the first four digits of the northing and easting coordinates referenced to the Pennsylvania State Plane coordinate system, followed by the State designator "PA", and the State Plane zone designator "S".

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

DCNR PAMAP Program
2007 - 2008

PAMAP Program - Color Orthophotos Cycle 2

This dataset, produced by the PAMAP Program, consists of an orthorectified digital raster image (i.e. orthoimage) with a horizontal ground resolution of 1 foot. An orthoimage is a remotely sensed image that has been positionally corrected for camera lens distortion, vertical displacement, and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Source images were captured in natural color at a negative scale of 1:19200. PAMAP data are organized into blocks, which do not have gaps or overlaps, that represent 10,000 feet by 10,000 feet on the ground. The coordinate system for blocks in the northern half of the state is Pennsylvania State Plane North (datum:NAD83, units: feet); blocks in the southern half of the state are in Pennsylvania State Plane South. A block name is formed by concatenating the first four digits of the State Plane northing and easting defining the block's northwest corner, the State identifier "PA", and the State Plane zone designator "N" or "S" (e.g. 45001210PAS).

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

DCNR PAMAP Program
2003 - 2006

PAMAP Program - County Mosaics 2003 - 2006

County Mosaics MR.SID format - An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. The PAMAP 2005 natural color orthoimages were produced at 1-foot pixel resolution. Each orthoimage provides imagery for a 10,000 x 10,000 ft. block on the ground. The projected coordinate system is Pennsylvania State Plane South with a NAD83 datum. There is no image overlap been adjacent files. The orthoimage filenames were derived from the northwest corner of each ortho tile using the first four digits of the northing and easting coordinates referenced to the Pennsylvania State Plane coordinate system, followed by the State designator "PA," and the State Plane zone designator "S." This dataset consists of 10000 x 10000 ft. uncompressed natural color (24-bit) GeoTIFF files at a pixel resolution of 1 foot. The imagery was captured at a negative scale of 1:19200 for the purpose of producing orthophotos.

Metadata | Download | More Options...

DCNR PAMAP Program
2007 - 2008

PAMAP Program - County Mosaics 2007 - 2008

County Mosaics JPEG 2000 format - This dataset, produced by the PAMAP Program, consists of an orthorectified digital raster image (i.e. orthoimage) with a horizontal ground resolution of 1 foot. An orthoimage is a remotely sensed image that has been positionally corrected for camera lens distortion, vertical displacement, and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Source images were captured in natural color at a negative scale of 1:19200. PAMAP data are organized into blocks, which do not have gaps or overlaps, that represent 10,000 feet by 10,000 feet on the ground. The coordinate system for blocks in the northern half of the state is Pennsylvania State Plane North (datum:NAD83, units: feet); blocks in the southern half of the state are in Pennsylvania State Plane South. A block name is formed by concatenating the first four digits of the State Plane northing and easting defining the block's northwest corner, the State identifier "PA", and the State Plane zone designator "N" or "S" (e.g. 45001210PAS).

Metadata | Download | More Options...

DCNR PAMAP Program
2005

PAMAP Program - Tile Index North

PAMAP 10,000 feet x 10,000 feet tile index covering counties in the southern State Plane zone of Pennsylvania. This version has been updated to include additional tiles within a 5000 feet buffer of the Pennsylvania border. Also, the one tile overlap along the border between the north-south State Plane zones has been removed.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

DCNR PAMAP Program
2005

PAMAP Program - Tile Index South

PAMAP 10,000 feet x 10,000 feet tile index covering counties in the southern State Plane zone of Pennsylvania. This version has been updated to include additional tiles within a 5000 feet buffer of the Pennsylvania border. Also, the one tile overlap along the border between the north-south State Plane zones has been removed.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

DCNR PAMAP Program
2000

DVRPC 2000 Digital Orthoimagery for Southeast Pennsylvania

An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Delaware Valley Regional Planning Commission
2000

DVRPC 2000 Digital Orthoimagery for Southeast Pennsylvania - Tile Index

Tile Index - An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Delaware Valley Regional Planning Commission
2005

DVRPC 2005 Digital Orthoimagery - County Mosaics Southeast, Pennsylvania

Mosaic - An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. This project consists of the creation of 3-band, 24 bit color digital orthophoto tiles for the 5-county, Pennsylvania portion DVRPC?s region utilizing a Leica ADS40 digital imaging system. The tiles were delivered in both GeoTIFF and MrSID MG3 formats. A GeoTIFF is a TIFF file which has geographic (or cartographic) data embedded as tags within the TIFF file. The geographic data can then be used to position the image in the correct location and geometry within a geographic information system (GIS) display. MrSID (Multi-resolution Seamless Image Database) is a proprietary, wavelet-based, image compression file format (*.sid) developed and patented by LizardTech, Inc. A 20:1 compression ratio was used for the MrSIDs. The complete data set contains 1,540 full ortho tiles in Pennsylvania State Plane South coordinate system, NAD83. The individual tiles measure 5,055' x 8,745' at a 1.0' pixel size. There is no image overlap between adjacent tiles. Counties include: Bucks, Chester, Delaware, Montgomery, and Philadelphia.

Metadata | Download | More Options...

Delaware Valley Regional Planning Commission
2005

DVRPC 2005 Digital Orthoimagery for Southeast Pennsylvania

An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. This project consists of the creation of 3-band, 24 bit color digital orthophoto tiles for the 5-county, Pennsylvania portion DVRPC?s region utilizing a Leica ADS40 digital imaging system. The tiles were delivered in both GeoTIFF and MrSID MG3 formats. A GeoTIFF is a TIFF file which has geographic (or cartographic) data embedded as tags within the TIFF file. The geographic data can then be used to position the image in the correct location and geometry within a geographic information system (GIS) display. MrSID (Multi-resolution Seamless Image Database) is a proprietary, wavelet-based, image compression file format (*.sid) developed and patented by LizardTech, Inc. A 20:1 compression ratio was used for the MrSIDs. The complete data set contains 1,540 full ortho tiles in Pennsylvania State Plane South coordinate system, NAD83. The individual tiles measure 5,055' x 8,745' at a 1.0' pixel size. There is no image overlap between adjacent tiles.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Delaware Valley Regional Planning Commission
2010

DVRPC 2010 Digital Orthoimagery - County Mosaics Southeast, Pennsylvania

Mosaic - An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. This project consists of the creation of 3-band, 24 bit color digital orthophoto tiles for the 5-county, Pennsylvania portion DVRPC?s region utilizing a Leica ADS40 digital imaging system. The tiles were delivered in both GeoTIFF and MrSID MG3 formats. A GeoTIFF is a TIFF file which has geographic (or cartographic) data embedded as tags within the TIFF file. The geographic data can then be used to position the image in the correct location and geometry within a geographic information system (GIS) display. MrSID (Multi-resolution Seamless Image Database) is a proprietary, wavelet-based, image compression file format (*.sid) developed and patented by LizardTech, Inc. A 20:1 compression ratio was used for the MrSIDs. The complete data set contains 1,540 full ortho tiles in Pennsylvania State Plane South coordinate system, NAD83. The individual tiles measure 5,055' x 8,745' at a 1.0' pixel size. There is no image overlap between adjacent tiles. Counties include: Bucks, Chester, Delaware, Montgomery, and Philadelphia.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Delaware Valley Regional Planning Commission
2010

DVRPC 2010 Digital Orthoimagery for Southeast Pennsylvania

An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. This project consists of the creation of 3-band, 24 bit color digital orthophoto tiles for the 5-county, Pennsylvania portion DVRPC?s region utilizing a Leica ADS40 digital imaging system. The tiles were delivered in both GeoTIFF and MrSID MG3 formats. A GeoTIFF is a TIFF file which has geographic (or cartographic) data embedded as tags within the TIFF file. The geographic data can then be used to position the image in the correct location and geometry within a geographic information system (GIS) display. MrSID (Multi-resolution Seamless Image Database) is a proprietary, wavelet-based, image compression file format (*.sid) developed and patented by LizardTech, Inc. A 20:1 compression ratio was used for the MrSIDs. The complete data set contains 1,540 full ortho tiles in Pennsylvania State Plane South coordinate system, NAD83. The individual tiles measure 5,055' x 8,745' at a 1.0' pixel size. There is no image overlap between adjacent tiles.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Delaware Valley Regional Planning Commission
2016

DVRPC 2015 Digital Orthoimagery for Southeast Pennsylvania

Multi-spectral digital orthophotography was produced at a scale of 1:2400 (1 in = 200 ft) with a 12 inch pixel resolution for the DVRPC - PA project area. Digital orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Orthophoto data is produced through the use of digitized perspective aerial photographs or other remotely sensed image data. This data is processed into a digital product that has been rectified for camera lens distortion, vertical displacement caused by terrain relief, and variations in aircraft altitude and orientation.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Delaware Valley Regional Planning Commission
2016

DVRPC 2015 Digital Orthoimagery for Southeast Pennsylvania - County Mosaics

Multi-spectral digital orthophotography was produced at a scale of 1:2400 (1 in = 200 ft) with a 12 inch pixel resolution for the DVRPC - PA project area. Digital orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Orthophoto data is produced through the use of digitized perspective aerial photographs or other remotely sensed image data. This data is processed into a digital product that has been rectified for camera lens distortion, vertical displacement caused by terrain relief, and variations in aircraft altitude and orientation.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Delaware Valley Regional Planning Commission
2016

DVRPC 2015 Digital Orthoimagery for Southeast Pennsylvania - Tile Index

Multi-spectral digital orthophotography was produced at a scale of 1:2400 (1 in = 200 ft) with a 12 inch pixel resolution for the DVRPC - PA project area. Digital orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Orthophoto data is produced through the use of digitized perspective aerial photographs or other remotely sensed image data. This data is processed into a digital product that has been rectified for camera lens distortion, vertical displacement caused by terrain relief, and variations in aircraft altitude and orientation.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Delaware Valley Regional Planning Commission
2016

DVRPC 2015 LiDAR - DEM

Delaware Valley 2015 LiDAR project called for the Planning, Acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meter. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of UTM Zone 18, NAD83 (2011), meters and vertical datum of NAVD1988 (GEOID12A), meters. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 25 individual 1500 meter X 1500 meter tiles for the pilot (3752 individual 1500 meter X 1500 meter tiles for the entire project area), Bare Earth DEMs tiled to the same 1500 meter X 1500 meter tile schema, and Breaklines in Esri shapefile format. Ground Conditions: LiDAR was collected in spring of 2015, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established 76 calibration control points in order to calibrate the LIDAR to known ground locations established throughout the Delaware Valley project area. The accuracy of the data was checked with 91 NVA points and 70 VVA points (161 total QC checkpoints).

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Delaware Valley Regional Planning Commission
2016

DVRPC 2015 LiDAR - Intensity Images

Delaware Valley 2015 LiDAR project called for the Planning, Acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meter. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of UTM Zone 18, NAD83 (2011), meters and vertical datum of NAVD1988 (GEOID12A), meters. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 25 individual 1500 meter X 1500 meter tiles for the pilot (3752 individual 1500 meter X 1500 meter tiles for the entire project area), Bare Earth DEMs tiled to the same 1500 meter X 1500 meter tile schema, and Breaklines in Esri shapefile format. Ground Conditions: LiDAR was collected in spring of 2015, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established 76 calibration control points in order to calibrate the LIDAR to known ground locations established throughout the Delaware Valley project area. The accuracy of the data was checked with 91 NVA points and 70 VVA points (161 total QC checkpoints).

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Delaware Valley Regional Planning Commission
2016

DVRPC 2015 LiDAR - LAS

Delaware Valley 2015 LiDAR project called for the Planning, Acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meter. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of UTM Zone 18, NAD83 (2011), meters and vertical datum of NAVD1988 (GEOID12A), meters. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 25 individual 1500 meter X 1500 meter tiles for the pilot (3752 individual 1500 meter X 1500 meter tiles for the entire project area), Bare Earth DEMs tiled to the same 1500 meter X 1500 meter tile schema, and Breaklines in Esri shapefile format. Ground Conditions: LiDAR was collected in spring of 2015, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established 76 calibration control points in order to calibrate the LIDAR to known ground locations established throughout the Delaware Valley project area. The accuracy of the data was checked with 91 NVA points and 70 VVA points (161 total QC checkpoints).

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Delaware Valley Regional Planning Commission
2020

DVRPC 2020 Digital Orthoimagery - County Mosaics

This orthoimagery consists of 1-foot pixel resolution, 3-band, natural color county mosaics in JPEG 2000 format covering the Delaware Valley Regional Planning Commission’s (DVRPC) 9-county region (Bucks, Chester, Delaware, Montgomery, and Philadelphia counties in Pennsylvania; and Burlington, Camden, Gloucester, and Mercer counties in New Jersey). This orthoimagery was acquired in the late winter/early spring of 2020. An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Delaware Valley Regional Planning Commission
1959 - 1995

DVRPC Historic Digital Imagery (multiple years) 1959, 1965-1995

Prior to the year 2000, DVRPC’s aerial imagery consisted of mylar aerial photo enlargements or “atlas sheets”. These atlas sheets were produced from 9x9" aerial photos. The imagery dates from the years 1959, 1965, 1970, 1975, 1980, 1985, 1990, & 1995. The 1959s and 1965s primarily cover the urbanized portion of the DVRPC region (the DVRPC region is made up of nine counties: Bucks, Chester, Delaware, Montgomery, and Philadelphia in Pennsylvania; Burlington, Camden, Gloucester, and Mercer in New Jersey). Subsequent years provide full coverage of the region, minus the occasional missing scan. In order to increase the efficiency of using the historical aerial imagery, the sheets were scanned into TIFF (Tagged Image File Format) files. Each TIFF file ranges between 35- 40MB in size. Unlike DVRPC’s more recent aerial imagery (2000 and later), the historical aerials are not “orthorectified” or “orthocorrected”. In other words, they are simply aerial images with no spatial reference or uniform scale. Through the process of georeferencing, the scanned images can be assigned a spatial reference which will enable them to be used more readily in a GIS environment. That said, georeferencing is not orthorectifying or orthocorrecting. What it does allow is for the scan to be displayed relative to other spatially referenced GIS layers. A georeferenced scan does not have the properties of an actual orthoimage. Whereas an orthoimage can be used for making accurate measurements, a georeferenced image cannot, as it does not have the spatial accuracy and uniform scale of an orthoimage. ftp://ftp.pasda.psu.edu/pub/pasda/dvrpc/DVRPC_Historical_Aerials/Indexes/DVRPC_Historical_Aerial_Index_Maps.pdf https://www.dvrpc.org/webmaps/TileIndex/

Metadata | Download | More Options...

Delaware Valley Regional Planning Commission
2012

Lancaster County, PA - CIR Orthoimages

Color InfraRed (CIR) Orthoimages State Plane for Lancaster County, Pennsylvania 2012

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Lancaster County
2012

Lancaster County, PA - CIR Orthoimages - (State Plane)

Color InfraRed (CIR) Orthoimages State Plane for Lancaster County, Pennsylvania 2012

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Lancaster County
2012

Lancaster County, PA - CIR Orthoimages - (UTM)

Color InfraRed (CIR) Orthoimages State Plane for Lancaster County, Pennsylvania 2012

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Lancaster County
2012

Lancaster County, PA - RGB Orthoimages

True Color (RGB) Orthoimages State Plane for Lancaster County, Pennsylvania 2012

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Lancaster County
2012

Lancaster County, PA - RGB Orthoimages - (State Plane)

True Color (RGB) Orthoimages State Plane for Lancaster County, Pennsylvania 2012

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Lancaster County
2012

Lancaster County, PA - RGB Orthoimages - (UTM)

True Color (RGB) Orthoimages State Plane for Lancaster County, Pennsylvania 2012

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Lancaster County
2010

LVPC 2010 Digital Orthoimagery for Lehigh/Northampton County, PA

Digital orthophoto covering Lehigh and Northampton County, Pennsylvania that was flow in spring 2010. An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Flown during leaf off conditions between March 27, 2010 and April 22, 2010. Digital imagery at 1''=200 design scale natural color aerial photography at 1' pixel resolution. Image tile dimensions are 5000' by 5000' and 1000tiles cover the entirety of Lehigh and Northampton Counties.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Lehigh Valley Planning Commission
2010

LVPC 2010 Digital Orthoimagery for Lehigh/Northampton County, PA - Tile Index

TILE INDEX - Digital orthophoto covering Lehigh and Northampton County, Pennsylvania that was flow in spring 2010. An orthoimage is remotely sensed image data that has been positionally corrected for camera lens distortion, vertical displacement and variations in aircraft altitude and orientation. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. Flown during leaf off conditions between March 27, 2010 and April 22, 2010. Digital imagery at 1''=200 design scale natural color aerial photography at 1' pixel resolution. Image tile dimensions are 5000' by 5000' and 1000tiles cover the entirety of Lehigh and Northampton Counties.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

Lehigh Valley Planning Commission
2016

LVPC 2015 Digital Orthoimagery for Lehigh/Northampton County, PA

Multi-spectral digital orthophotography was produced at a scale of 1:2400 (1 in = 200 ft) with a 12 inch pixel resolution for the LVPC project area. Digital orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Orthophoto data is produced through the use of digitized perspective aerial photographs or other remotely sensed image data. This data is processed into a digital product that has been rectified for camera lens distortion, vertical displacement caused by terrain relief, and variations in aircraft altitude and orientation.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Lehigh Valley Planning Commission
2016

LVPC 2015 Digital Orthoimagery for Lehigh/Northampton County, PA - County Mosaics

Multi-spectral digital orthophotography was produced at a scale of 1:2400 (1 in = 200 ft) with a 12 inch pixel resolution for the LVPC project area. Digital orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Orthophoto data is produced through the use of digitized perspective aerial photographs or other remotely sensed image data. This data is processed into a digital product that has been rectified for camera lens distortion, vertical displacement caused by terrain relief, and variations in aircraft altitude and orientation.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Lehigh Valley Planning Commission
2016

LVPC 2015 Digital Orthoimagery for Lehigh/Northampton County, PA - Tile Index

Multi-spectral digital orthophotography was produced at a scale of 1:2400 (1 in = 200 ft) with a 12 inch pixel resolution for the LVPC project area. Digital orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Orthophoto data is produced through the use of digitized perspective aerial photographs or other remotely sensed image data. This data is processed into a digital product that has been rectified for camera lens distortion, vertical displacement caused by terrain relief, and variations in aircraft altitude and orientation.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

Lehigh Valley Planning Commission
1995

Mifflin County aerial photography

Mifflin County aerial photography

Metadata | Download | More Options...

Mifflin County
2017

Fort Indiantown Gap LiDAR - Breaklines

The National Guard Bureau (NGB) required high accruacy classified LiDAR data in combination with raster digital elevation models and hydrographic breaklines. For this effort, Continental Mapping Consultants (Continental) will collect and process high accuracy classified LiDAR data in .LAS format as well as a combination of raster digital elevation models.The National Guard Bureau (NGB) requires the collection and processing of high accuracy classified LiDAR data in .LAS format as well as a combination of raster digital elevation models and additional hydrographic breaklines. The data is to be acquired during the Spring 2017 timeframe, during leaf-off conditions. The acquired LiDAR data will be used for various planning, design, research and mapping purposes. The NGB requires this data collection for Fort Indiantown Gap near Lebanon, Pennsylvania.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Pennsylvania Department of Military Veterans Affairs
2017

Fort Indiantown Gap LiDAR - DEM

The National Guard Bureau (NGB) required high accruacy classified LiDAR data in combination with raster digital elevation models and hydrographic breaklines. For this effort, Continental Mapping Consultants (Continental) will collect and process high accuracy classified LiDAR data in .LAS format as well as a combination of raster digital elevation models.The National Guard Bureau (NGB) requires the collection and processing of high accuracy classified LiDAR data in .LAS format as well as a combination of raster digital elevation models and additional hydrographic breaklines. The data is to be acquired during the Spring 2017 timeframe, during leaf-off conditions. The acquired LiDAR data will be used for various planning, design, research and mapping purposes. The NGB requires this data collection for Fort Indiantown Gap near Lebanon, Pennsylvania.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Pennsylvania Department of Military Veterans Affairs
2017

Fort Indiantown Gap LiDAR - Hillshade

The National Guard Bureau (NGB) required high accruacy classified LiDAR data in combination with raster digital elevation models and hydrographic breaklines. For this effort, Continental Mapping Consultants (Continental) will collect and process high accuracy classified LiDAR data in .LAS format as well as a combination of raster digital elevation models.The National Guard Bureau (NGB) requires the collection and processing of high accuracy classified LiDAR data in .LAS format as well as a combination of raster digital elevation models and additional hydrographic breaklines. The data is to be acquired during the Spring 2017 timeframe, during leaf-off conditions. The acquired LiDAR data will be used for various planning, design, research and mapping purposes. The NGB requires this data collection for Fort Indiantown Gap near Lebanon, Pennsylvania.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Pennsylvania Department of Military Veterans Affairs
2017

Fort Indiantown Gap LiDAR - las Tile Index

The National Guard Bureau (NGB) required high accruacy classified LiDAR data in combination with raster digital elevation models and hydrographic breaklines. For this effort, Continental Mapping Consultants (Continental) will collect and process high accuracy classified LiDAR data in .LAS format as well as a combination of raster digital elevation models.The National Guard Bureau (NGB) requires the collection and processing of high accuracy classified LiDAR data in .LAS format as well as a combination of raster digital elevation models and additional hydrographic breaklines. The data is to be acquired during the Spring 2017 timeframe, during leaf-off conditions. The acquired LiDAR data will be used for various planning, design, research and mapping purposes. The NGB requires this data collection for Fort Indiantown Gap near Lebanon, Pennsylvania.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Pennsylvania Department of Military Veterans Affairs
2017

Fort Indiantown Gap LiDAR - Slope

The National Guard Bureau (NGB) required high accruacy classified LiDAR data in combination with raster digital elevation models and hydrographic breaklines. For this effort, Continental Mapping Consultants (Continental) will collect and process high accuracy classified LiDAR data in .LAS format as well as a combination of raster digital elevation models.The National Guard Bureau (NGB) requires the collection and processing of high accuracy classified LiDAR data in .LAS format as well as a combination of raster digital elevation models and additional hydrographic breaklines. The data is to be acquired during the Spring 2017 timeframe, during leaf-off conditions. The acquired LiDAR data will be used for various planning, design, research and mapping purposes. The NGB requires this data collection for Fort Indiantown Gap near Lebanon, Pennsylvania.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Pennsylvania Department of Military Veterans Affairs
2005

Delaware River flood imagery

Aerial Photography of four flight lines, captures April 4, 2005 during a spring flood event in southeastern Pennsylvania.

Metadata | More Options...

Pennsylvania Department of Transportation
2018 - 2020

PEMA Orthoimagery - cached mapservice

This orthoimagery data set includes 0.5-foot (15-centimeter) 8-bit 4-band (RGBN) digital orthoimage tiles in GeoTIFF, Mr. SID, and JPEG 2000(JP2) format. The PEMA 2018 0.5-foot Orthoimagery called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5-foot (15 centimeters). Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Ortho Specification, Version 1.0. The data were developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania, US Survey Feet. Orthoimagery data was delivered as 298 individual 0.5-foot (15-centimeter) 1" = 100' GeoTIFF (uncompressed) 10,000-foot x 10,000-foot (3,048-meter x 3,048-meter) tiles. Aerial photography was captured during the spring of 2018, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet horizontal accuracy guidelines, Quantum Spatial, Inc. utilized a total of 496 QC points throughout the Commonwealth of Pennsylvania to assess the horizontal accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Pennsylvania Emergency Management Agency
2022

PEMA Orthoimagery - Cambria County

This orthoimagery data set includes 0.5 foot 8-bit 4-band (RGBN) digital orthoimage tiles in GeoTIFF, Mr. SID, and JPEG 2000 (JP2) format. Dataset Description: The PEMA 0.5-Foot Orthoimagery Delivery (US Survey Feet) project called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5 foot. Project specifications are based on the American Society of Photogrammetry and Remote Sensing (ASPRS) standards. The data were developed based on a horizontal projection/datum of NAD 1983 HARN StatePlane Pennsylvania North FIPS 3701 Feet, Foot US. Ground Conditions: Imagery was collected in spring 2022, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet ASPRS horizontal accuracy guidelines, NV5 Geospatial utilized a total of 119 ground control points to assess the horizontal accuracy of the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Pennsylvania Emergency Management Agency
2018 - 2020

PEMA Orthoimagery - JP2

This orthoimagery data set includes 0.5-foot (15-centimeter) 8-bit 4-band (RGBN) digital orthoimage tiles in GeoTIFF, Mr. SID, and JPEG 2000(JP2) format. The PEMA 2018 0.5-foot Orthoimagery called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5-foot (15 centimeters). Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Ortho Specification, Version 1.0. The data were developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania, US Survey Feet. Orthoimagery data was delivered as 298 individual 0.5-foot (15-centimeter) 1" = 100' GeoTIFF (uncompressed) 10,000-foot x 10,000-foot (3,048-meter x 3,048-meter) tiles. Aerial photography was captured during the spring of 2018, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet horizontal accuracy guidelines, Quantum Spatial, Inc. utilized a total of 496 QC points throughout the Commonwealth of Pennsylvania to assess the horizontal accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

Pennsylvania Emergency Management Agency
2018 - 2020

PEMA Orthoimagery - SID

This orthoimagery data set includes 0.5-foot (15-centimeter) 8-bit 4-band (RGBN) digital orthoimage tiles in GeoTIFF, Mr. SID, and JPEG 2000(JP2) format. The PEMA 2018 0.5-foot Orthoimagery called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5-foot (15 centimeters). Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Ortho Specification, Version 1.0. The data were developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania, US Survey Feet. Orthoimagery data was delivered as 298 individual 0.5-foot (15-centimeter) 1" = 100' GeoTIFF (uncompressed) 10,000-foot x 10,000-foot (3,048-meter x 3,048-meter) tiles. Aerial photography was captured during the spring of 2018, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet horizontal accuracy guidelines, Quantum Spatial, Inc. utilized a total of 496 QC points throughout the Commonwealth of Pennsylvania to assess the horizontal accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

Pennsylvania Emergency Management Agency
2022

PEMA Orthoimagery - Southwest PA

Counties include: Allegheny, Greene, Washington. This orthoimagery data set includes 0.5 foot 8-bit 4-band (RGBN) digital orthoimage tiles in GeoTIFF, Mr. SID, and JPEG 2000 (JP2) format. Dataset Description: The PEMA 0.5-Foot Orthoimagery Delivery (US Survey Feet) project called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5 foot. Project specifications are based on the American Society of Photogrammetry and Remote Sensing (ASPRS) standards. The data were developed based on a horizontal projection/datum of NAD 1983 HARN StatePlane Pennsylvania North FIPS 3701 Feet, Foot US. Ground Conditions: Imagery was collected in spring 2022, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet ASPRS horizontal accuracy guidelines, NV5 Geospatial utilized a total of 119 ground control points to assess the horizontal accuracy of the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Pennsylvania Emergency Management Agency
2018 - 2020

PEMA Orthoimagery - TIFF

This orthoimagery data set includes 0.5-foot (15-centimeter) 8-bit 4-band (RGBN) digital orthoimage tiles in GeoTIFF, Mr. SID, and JPEG 2000(JP2) format. The PEMA 2018 0.5-foot Orthoimagery called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5-foot (15 centimeters). Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Ortho Specification, Version 1.0. The data were developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania, US Survey Feet. Orthoimagery data was delivered as 298 individual 0.5-foot (15-centimeter) 1" = 100' GeoTIFF (uncompressed) 10,000-foot x 10,000-foot (3,048-meter x 3,048-meter) tiles. Aerial photography was captured during the spring of 2018, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet horizontal accuracy guidelines, Quantum Spatial, Inc. utilized a total of 496 QC points throughout the Commonwealth of Pennsylvania to assess the horizontal accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

Pennsylvania Emergency Management Agency
2018 - 2020

PEMA Orthoimagery - Tile Index North

This orthoimagery data set includes 0.5-foot (15-centimeter) 8-bit 4-band (RGBN) digital orthoimage tiles in GeoTIFF, Mr. SID, and JPEG 2000(JP2) format. The PEMA 2018 0.5-foot Orthoimagery called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5-foot (15 centimeters). Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Ortho Specification, Version 1.0. The data were developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania, US Survey Feet. Orthoimagery data was delivered as 298 individual 0.5-foot (15-centimeter) 1" = 100' GeoTIFF (uncompressed) 10,000-foot x 10,000-foot (3,048-meter x 3,048-meter) tiles. Aerial photography was captured during the spring of 2018, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet horizontal accuracy guidelines, Quantum Spatial, Inc. utilized a total of 496 QC points throughout the Commonwealth of Pennsylvania to assess the horizontal accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | KMZ | Spreadsheet | GeoJSON | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

Pennsylvania Emergency Management Agency
2018 - 2020

PEMA Orthoimagery - Tile Index South

This orthoimagery data set includes 0.5-foot (15-centimeter) 8-bit 4-band (RGBN) digital orthoimage tiles in GeoTIFF, Mr. SID, and JPEG 2000(JP2) format. The PEMA 2018 0.5-foot Orthoimagery called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5-foot (15 centimeters). Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Ortho Specification, Version 1.0. The data were developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania, US Survey Feet. Orthoimagery data was delivered as 298 individual 0.5-foot (15-centimeter) 1" = 100' GeoTIFF (uncompressed) 10,000-foot x 10,000-foot (3,048-meter x 3,048-meter) tiles. Aerial photography was captured during the spring of 2018, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet horizontal accuracy guidelines, Quantum Spatial, Inc. utilized a total of 496 QC points throughout the Commonwealth of Pennsylvania to assess the horizontal accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | KMZ | Spreadsheet | GeoJSON | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

Pennsylvania Emergency Management Agency
2021 - 2022

PEMA Orthoimagery Cycle 2 - Tile Index

This orthoimagery data set includes 0.5 foot 8-bit 4-band (RGBN) digital orthoimage mosaics in GeoTIFF, Mr. SID, and JPEG 2000 (JP2) format. Dataset Description: The PEMA 2020-2021 0.5-Foot Orthoimagery project called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5 foot. Project specifications are based on the American Society of Photogrammetry and Remote Sensing (ASPRS) standards. The data were developed based on a horizontal projection/datum of NAD 1983 HARN StatePlane Pennsylvania Feet, Foot US.. Ground Conditions: Imagery was collected in winter 2020 and 2021, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet ASPRS horizontal accuracy guidelines, NV5 Geospatial utilized a total of 496 ground control points to assess the horizontal accuracy of the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Pennsylvania Emergency Management Agency
2021

PEMA Orthoimagery Eastern PA - cached mapservice

Counties include: Adams, Berks, Bucks, Carbon, Chester, Columbia, Cumberland, Dauphin, Delaware, Franklin, Lackawanna, Lancaster, Lebanon, Lehigh, Monroe, Montgomery, Northampton, Northumberland, Perry, Philadelphia, Pike, Schuylkill, Susquehanna, Wayne, Wyoming, York. Product: This orthoimagery data set includes 0.5 foot 8-bit 4-band (RGBN) digital orthoimage mosaics in GeoTIFF, Mr. SID, and JPEG 2000 (JP2) format. Dataset Description: The PEMA 2020-2021 0.5-Foot Orthoimagery project called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5 foot. Project specifications are based on the American Society of Photogrammetry and Remote Sensing (ASPRS) standards. The data were developed based on a horizontal projection/datum of NAD 1983 HARN StatePlane Pennsylvania Feet, Foot US.. Ground Conditions: Imagery was collected in winter 2020 and 2021, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet ASPRS horizontal accuracy guidelines, NV5 Geospatial utilized a total of 496 ground control points to assess the horizontal accuracy of the data.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Pennsylvania Emergency Management Agency
2021

PEMA Orthoimagery Eastern PA - County Mosaics

Counties include: Adams, Berks, Bucks, Carbon, Chester, Columbia, Cumberland, Dauphin, Delaware, Franklin, Lackawanna, Lancaster, Lebanon, Lehigh, Monroe, Montgomery, Northampton, Northumberland, Perry, Philadelphia, Pike, Schuylkill, Susquehanna, Wayne, Wyoming, York. Product: This orthoimagery data set includes 0.5 foot 8-bit 4-band (RGBN) digital orthoimage mosaics in GeoTIFF, Mr. SID, and JPEG 2000 (JP2) format. Dataset Description: The PEMA 2020-2021 0.5-Foot Orthoimagery project called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5 foot. Project specifications are based on the American Society of Photogrammetry and Remote Sensing (ASPRS) standards. The data were developed based on a horizontal projection/datum of NAD 1983 HARN StatePlane Pennsylvania Feet, Foot US.. Ground Conditions: Imagery was collected in winter 2020 and 2021, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet ASPRS horizontal accuracy guidelines, NV5 Geospatial utilized a total of 496 ground control points to assess the horizontal accuracy of the data.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Pennsylvania Emergency Management Agency
2021

PEMA Orthoimagery Eastern PA - JP2

Counties include: Adams, Berks, Bucks, Carbon, Chester, Columbia, Cumberland, Dauphin, Delaware, Franklin, Lackawanna, Lancaster, Lebanon, Lehigh, Monroe, Montgomery, Northampton, Northumberland, Perry, Philadelphia, Pike, Schuylkill, Susquehanna, Wayne, Wyoming, York. Product: This orthoimagery data set includes 0.5 foot 8-bit 4-band (RGBN) digital orthoimage mosaics in GeoTIFF, Mr. SID, and JPEG 2000 (JP2) format. Dataset Description: The PEMA 2020-2021 0.5-Foot Orthoimagery project called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5 foot. Project specifications are based on the American Society of Photogrammetry and Remote Sensing (ASPRS) standards. The data were developed based on a horizontal projection/datum of NAD 1983 HARN StatePlane Pennsylvania Feet, Foot US.. Ground Conditions: Imagery was collected in winter 2020 and 2021, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet ASPRS horizontal accuracy guidelines, NV5 Geospatial utilized a total of 496 ground control points to assess the horizontal accuracy of the data.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Pennsylvania Emergency Management Agency
2021

PEMA Orthoimagery Eastern PA - SID

Counties include: Adams, Berks, Bucks, Carbon, Chester, Columbia, Cumberland, Dauphin, Delaware, Franklin, Lackawanna, Lancaster, Lebanon, Lehigh, Monroe, Montgomery, Northampton, Northumberland, Perry, Philadelphia, Pike, Schuylkill, Susquehanna, Wayne, Wyoming, York. Product: This orthoimagery data set includes 0.5 foot 8-bit 4-band (RGBN) digital orthoimage mosaics in GeoTIFF, Mr. SID, and JPEG 2000 (JP2) format. Dataset Description: The PEMA 2020-2021 0.5-Foot Orthoimagery project called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5 foot. Project specifications are based on the American Society of Photogrammetry and Remote Sensing (ASPRS) standards. The data were developed based on a horizontal projection/datum of NAD 1983 HARN StatePlane Pennsylvania Feet, Foot US.. Ground Conditions: Imagery was collected in winter 2020 and 2021, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet ASPRS horizontal accuracy guidelines, NV5 Geospatial utilized a total of 496 ground control points to assess the horizontal accuracy of the data.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Pennsylvania Emergency Management Agency
2021

PEMA Orthoimagery Eastern PA -TIF

Counties include: Adams, Berks, Bucks, Carbon, Chester, Columbia, Cumberland, Dauphin, Delaware, Franklin, Lackawanna, Lancaster, Lebanon, Lehigh, Monroe, Montgomery, Northampton, Northumberland, Perry, Philadelphia, Pike, Schuylkill, Susquehanna, Wayne, Wyoming, York. Product: This orthoimagery data set includes 0.5 foot 8-bit 4-band (RGBN) digital orthoimage mosaics in GeoTIFF, Mr. SID, and JPEG 2000 (JP2) format. Dataset Description: The PEMA 2020-2021 0.5-Foot Orthoimagery project called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5 foot. Project specifications are based on the American Society of Photogrammetry and Remote Sensing (ASPRS) standards. The data were developed based on a horizontal projection/datum of NAD 1983 HARN StatePlane Pennsylvania Feet, Foot US.. Ground Conditions: Imagery was collected in winter 2020 and 2021, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet ASPRS horizontal accuracy guidelines, NV5 Geospatial utilized a total of 496 ground control points to assess the horizontal accuracy of the data.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

Pennsylvania Emergency Management Agency
2022

PEMA Orthoimagery Western PA

This orthoimagery data set includes 0.5 foot 8-bit 4-band (RGBN) digital orthoimage tiles in GeoTIFF, Mr. SID, and JPEG 2000 (JP2) format. Dataset Description: The PEMA 0.5-Foot Orthoimagery Delivery (US Survey Feet) project called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5 foot. Project specifications are based on the American Society of Photogrammetry and Remote Sensing (ASPRS) standards. The data were developed based on a horizontal projection/datum of NAD 1983 HARN StatePlane Pennsylvania North FIPS 3701 Feet, Foot US. Ground Conditions: Imagery was collected in spring 2022, while no snow was on the ground and rivers were at or below normal levels. In order to post process the imagery data to meet task order specifications and meet ASPRS horizontal accuracy guidelines, NV5 Geospatial utilized a total of 119 ground control points to assess the horizontal accuracy of the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

Pennsylvania Emergency Management Agency
2004

Pennsylvania Tropical Depression Ivan flood imagery

This metadata record describes the production of natural color digital orthophotography for all priority area of the September 2004 Pennsylvania flood assessment project. All imagery was acquired during September of 2004.

Metadata | Download | More Options...

Pennsylvania Emergency Management Agency
2010

Aerial Photo Color 2003-2006 (cached mapservice)

PAMAP Program Cycle 1/DVRPC 2005 Digital Orthoimagery High Resolution Orthoimage (2003 - 2006) - cached mapservice

Metadata | Preview | KMZ | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2012

Lake Erie Watershed 2012 Orthoimagery - CIR

2012 Lake Erie Drainage Area (Erie, PA) Digital Orthoimagery Project - In the fall of 2012, Woolpert obtained new aerial Orthoimagery covering the entire project area (512 square miles). The aerial Orthoimagery was collected during leaf-off conditions during the fall 2012 flying season (November) at 1"=100' scale with a 6-inch pixel resolution. The Orthoimagery is being delivered as a project area wide dataset, consisting of 2,500' x 2,500' tiles. The file naming convention is as follows: xxxyyy (Pennsylvania North Zone); Please note that xxx and yyy represent the easting and northing coordinates (respectively) in state plane feet. Ownership of the data products resides with Penn State and the Pennsylvania Department of Environmental Protection.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2012

Lake Erie Watershed 2012 Orthoimagery - RGB

2012 Lake Erie Drainage Area (Erie, PA) Digital Orthoimagery Project - In the fall of 2012, Woolpert obtained new aerial Orthoimagery covering the entire project area (512 square miles). The aerial Orthoimagery was collected during leaf-off conditions during the fall 2012 flying season (November) at 1"=100' scale with a 6-inch pixel resolution. The Orthoimagery is being delivered as a project area wide dataset, consisting of 2,500' x 2,500' tiles. The file naming convention is as follows: xxxyyy (Pennsylvania North Zone); Please note that xxx and yyy represent the easting and northing coordinates (respectively) in state plane feet. Ownership of the data products resides with Penn State and the Pennsylvania Department of Environmental Protection.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2017

Lake Erie Watershed 2015 Orthoimagery - CIR

Lake Erie Watershed 2015 Ortho/LiDAR/Hydro Project will consist the following: • New project – wide 1”=100’ scale color digital orthoimagery (with a 6-inch pixel resolution) • New project wide 0.7-meter LiDAR (average point density) • New project wide hydrology • Crest Delineation This task is for a high resolution data set of lidar covering approximately 512 square miles of the Lake Erie Shoreline, PA. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, 2.5' pixel raster DEMs of the bare-earth surface in ERDAS IMG Format. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, 8-bit intensity images, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. To better understand one of the state’s most vital natural resources and accurately plan for the future, the Pennsylvania Department of Environmental Protection (PADEP), through grant funding provided to the Pennsylvania Sea Grant (PASG) College Program, partnered with Woolpert to acquire imagery and lidar data for the entire Pennsylvania Lake Erie Watershed and all 77 miles of shoreline. - See more at: http://www.xyht.com/aerialuas/heights-april-2017-mapping-the-pennsylvania-lake-erie-watershed/#sthash.n3pVphR6.dpuf

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2017

Lake Erie Watershed 2015 Orthoimagery - RGB

Lake Erie Watershed 2015 Ortho/LiDAR/Hydro Project will consist the following: • New project – wide 1”=100’ scale color digital orthoimagery (with a 6-inch pixel resolution) • New project wide 0.7-meter LiDAR (average point density) • New project wide hydrology • Crest Delineation This task is for a high resolution data set of lidar covering approximately 512 square miles of the Lake Erie Shoreline, PA. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, 2.5' pixel raster DEMs of the bare-earth surface in ERDAS IMG Format. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, 8-bit intensity images, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. To better understand one of the state’s most vital natural resources and accurately plan for the future, the Pennsylvania Department of Environmental Protection (PADEP), through grant funding provided to the Pennsylvania Sea Grant (PASG) College Program, partnered with Woolpert to acquire imagery and lidar data for the entire Pennsylvania Lake Erie Watershed and all 77 miles of shoreline. - See more at: http://www.xyht.com/aerialuas/heights-april-2017-mapping-the-pennsylvania-lake-erie-watershed/#sthash.n3pVphR6.dpuf

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2017

Lake Erie Watershed Imagery 2015 - Tile Index

Lake Erie Watershed 2015 Ortho/LiDAR/Hydro Project will consist the following: • New project – wide 1”=100’ scale color digital orthoimagery (with a 6-inch pixel resolution) • New project wide 0.7-meter LiDAR (average point density) • New project wide hydrology • Crest Delineation This task is for a high resolution data set of lidar covering approximately 512 square miles of the Lake Erie Shoreline, PA. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, 2.5' pixel raster DEMs of the bare-earth surface in ERDAS IMG Format. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, 8-bit intensity images, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. To better understand one of the state’s most vital natural resources and accurately plan for the future, the Pennsylvania Department of Environmental Protection (PADEP), through grant funding provided to the Pennsylvania Sea Grant (PASG) College Program, partnered with Woolpert to acquire imagery and lidar data for the entire Pennsylvania Lake Erie Watershed and all 77 miles of shoreline. - See more at: http://www.xyht.com/aerialuas/heights-april-2017-mapping-the-pennsylvania-lake-erie-watershed/#sthash.n3pVphR6.dpuf

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2017

Lake Erie Watershed LiDAR 2015 - DEM

Lake Erie Watershed 2015 Ortho/LiDAR/Hydro Project will consist the following: • New project – wide 1”=100’ scale color digital orthoimagery (with a 6-inch pixel resolution) • New project wide 0.7-meter LiDAR (average point density) • New project wide hydrology • Crest Delineation This task is for a high resolution data set of lidar covering approximately 512 square miles of the Lake Erie Shoreline, PA. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, 2.5' pixel raster DEMs of the bare-earth surface in ERDAS IMG Format. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, 8-bit intensity images, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. To better understand one of the state’s most vital natural resources and accurately plan for the future, the Pennsylvania Department of Environmental Protection (PADEP), through grant funding provided to the Pennsylvania Sea Grant (PASG) College Program, partnered with Woolpert to acquire imagery and lidar data for the entire Pennsylvania Lake Erie Watershed and all 77 miles of shoreline. - See more at: http://www.xyht.com/aerialuas/heights-april-2017-mapping-the-pennsylvania-lake-erie-watershed/#sthash.n3pVphR6.dpuf

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2017

Lake Erie Watershed LiDAR 2015 - hydro breaklines

Lake Erie Watershed 2015 Ortho/LiDAR/Hydro Project will consist the following: • New project – wide 1”=100’ scale color digital orthoimagery (with a 6-inch pixel resolution) • New project wide 0.7-meter LiDAR (average point density) • New project wide hydrology • Crest Delineation This task is for a high resolution data set of lidar covering approximately 512 square miles of the Lake Erie Shoreline, PA. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, 2.5' pixel raster DEMs of the bare-earth surface in ERDAS IMG Format. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, 8-bit intensity images, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. To better understand one of the state’s most vital natural resources and accurately plan for the future, the Pennsylvania Department of Environmental Protection (PADEP), through grant funding provided to the Pennsylvania Sea Grant (PASG) College Program, partnered with Woolpert to acquire imagery and lidar data for the entire Pennsylvania Lake Erie Watershed and all 77 miles of shoreline. - See more at: http://www.xyht.com/aerialuas/heights-april-2017-mapping-the-pennsylvania-lake-erie-watershed/#sthash.n3pVphR6.dpuf

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2017

Lake Erie Watershed LiDAR 2015 - intensity images

Lake Erie Watershed 2015 Ortho/LiDAR/Hydro Project will consist the following: • New project – wide 1”=100’ scale color digital orthoimagery (with a 6-inch pixel resolution) • New project wide 0.7-meter LiDAR (average point density) • New project wide hydrology • Crest Delineation This task is for a high resolution data set of lidar covering approximately 512 square miles of the Lake Erie Shoreline, PA. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, 2.5' pixel raster DEMs of the bare-earth surface in ERDAS IMG Format. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, 8-bit intensity images, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. To better understand one of the state’s most vital natural resources and accurately plan for the future, the Pennsylvania Department of Environmental Protection (PADEP), through grant funding provided to the Pennsylvania Sea Grant (PASG) College Program, partnered with Woolpert to acquire imagery and lidar data for the entire Pennsylvania Lake Erie Watershed and all 77 miles of shoreline. - See more at: http://www.xyht.com/aerialuas/heights-april-2017-mapping-the-pennsylvania-lake-erie-watershed/#sthash.n3pVphR6.dpuf

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2017

Lake Erie Watershed LiDAR 2015 - las

Lake Erie Watershed 2015 Ortho/LiDAR/Hydro Project will consist the following: • New project – wide 1”=100’ scale color digital orthoimagery (with a 6-inch pixel resolution) • New project wide 0.7-meter LiDAR (average point density) • New project wide hydrology • Crest Delineation This task is for a high resolution data set of lidar covering approximately 512 square miles of the Lake Erie Shoreline, PA. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, 2.5' pixel raster DEMs of the bare-earth surface in ERDAS IMG Format. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, 8-bit intensity images, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. To better understand one of the state’s most vital natural resources and accurately plan for the future, the Pennsylvania Department of Environmental Protection (PADEP), through grant funding provided to the Pennsylvania Sea Grant (PASG) College Program, partnered with Woolpert to acquire imagery and lidar data for the entire Pennsylvania Lake Erie Watershed and all 77 miles of shoreline. - See more at: http://www.xyht.com/aerialuas/heights-april-2017-mapping-the-pennsylvania-lake-erie-watershed/#sthash.n3pVphR6.dpuf

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2014

Penn State University Park Campus Imagery 2012

Penn State Campus Imagery (caputured in 2012)

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2015

Penn State University Park Campus Imagery 2015

Penn State Campus Imagery (caputured in 2015) includes Stone Valley Recreation Area

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2019

Penn State University Park Campus Imagery 2019

Penn State Campus Imagery (caputured in 2019)

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

The Pennsylvania State University
2022

Penn State University Park Campus Imagery 2022

Penn State Campus Imagery (caputured in 2022)

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

The Pennsylvania State University
1938 - 1980

PennPilot (Historical Aerial Photo Library)

Penn Pilot, a project sponsored by the Pennsylvania Geological Survey, is an online library of digital historical aerial photography for the Commonwealth of Pennsylvania. Using the interactive map provided on this website, you can browse, view, and download thousands of photos covering the Commonwealth from 1937 to 1942 and 1967 to 1972.

Metadata | Download | More Options...

The Pennsylvania State University
2017

High Resolution NHAP CIR for Pennsylvania 1980 to 1987

The National High Altitude Photography (NHAP) program was coordinated by the USGS as an interagency project to acquire cloud-free aerial photographs at an altitude of 40,000 feet above mean terrain elevation. Two different camera systems were used to obtain simultaneous coverage of black-and-white (BW) and color infrared (CIR) aerial photographs over the conterminous United States. The color-infrared photographs were taken with an 8.25-inch focal length lens and are at a scale of 1:58,000. The black-and-white photographs were taken with a 6-inch focal length lens and are at a scale of 1:80,000. The NHAP program, which was operational from 1980 to 1989, consists of approximately 500,000 images. Photographs were acquired on 9-inch film and centered over USGS 7.5-minute quadrangles. Not Georeferenced. Statewide historic aerial images for Pennsylvania. Color-infrared photographs from the National High Altitude Photography (NHAP) program, conducted by the USGS. Pennsylvaina imagery was captured between 03/27/1980 & 05/13/1987. The USGS "The National High Altitude Photography (NHAP) program, which was operated from 1980-1989, was coordinated by the U.S. Geological Survey as an interagency project to eliminate duplicate photography in various Government programs. The aim of the program was to cover the 48 conterminous states over a 5-year span. In the NHAP program, black-and-white and color-infrared aerial photographs were obtained on 9-inch film from an altitude of 40,000 feet above mean terrain elevation and are centered over USGS 7.5-minute quadrangles. The color-infrared photographs are at a scale of 1:58,000 (1 inch equals about .9 miles). All NHAP flights were flown in a North to South direction. These photographs are offered as digital images" (https://catalog.data.gov/dataset/nhap-national-high-altitude-aerial-photography-1980-1989 , April 2017). In 2016, Donald W. Hamer Center for Maps & Geospatial Information at The Pennsylvania State University obtained high quality digital images of 9x9 film from USDA - FSA Aerial Photography Field Office (APFO). Digital images were captured at 2,032 dpi with Wehrli and Associates, Inc. RM-6 and RM-3 photogrammetric scanners. The complete collection of 2,607 images contain 60% forward and 30% side to side overlapping coverage for all of Pennsylvania.

Metadata | Download | More Options...

U S Department of Agriculture
2004

National Agriculture Imagery Program (NAIP) 2004 for Pennsylvania

This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 3 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP); and, 2 meter GSD ortho imagery rectified to within +/- 10 meters of reference DOQQs. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP quarter quadrangle tiles that cover a county. MrSID compression, with mosaic option, was used. Target values for the compression ratio are (50:1) and compression levels(9) are used.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2004

National Agriculture Imagery Program (NAIP) 2004 for Pennsylvania - County Mosaics

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. The NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. The NAIP imagery is formatted to the UTM coordinate system using the North American Datum of 1983 (NAD83). The NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP imagery that cover the county extent. Two types of compression may be used for NAIP imagery: MrSID and JPEG 2000. Target value for the compression ratio is (15:1).

Metadata | Download | More Options...

U S Department of Agriculture
2004

National Agriculture Imagery Program (NAIP) 2004 for Pennsylvania - Tile Index

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. The NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. The NAIP imagery is formatted to the UTM coordinate system using the North American Datum of 1983 (NAD83). The NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP imagery that cover the county extent. Two types of compression may be used for NAIP imagery: MrSID and JPEG 2000. Target value for the compression ratio is (15:1).

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2005

National Agriculture Imagery Program (NAIP) 2005 for Pennsylvania - County Mosaics

This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 3 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP); and, 2 meter GSD ortho imagery rectified to within +/- 10 meters of reference DOQQs. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP quarter quadrangle tiles that cover a county. MrSID compression, with mosaic option, was used. Target values for the compression ratio are (50:1) and compression levels(9) are used.

Metadata | Download | More Options...

U S Department of Agriculture
2008

National Agriculture Imagery Program (NAIP) 2008 for Pennsylvania

This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified to within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP quarter quadrangle tiles that cover a county. Two types of compression may be used for 2008 NAIP imagery: MrSID and JPEG 2000. Target values for the compression ratio are (15:1).

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2008

National Agriculture Imagery Program (NAIP) 2008 for Pennsylvania - Tile Index

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. The NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. The NAIP imagery is formatted to the UTM coordinate system using the North American Datum of 1983 (NAD83). The NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP imagery that cover the county extent. Two types of compression may be used for NAIP imagery: MrSID and JPEG 2000. Target value for the compression ratio is (15:1).

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2010

National Agriculture Imagery Program (NAIP) 2010 for Pennsylvania - 4 Band JPEG200

4 Band JPEG200 - This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 3 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP); and, 2 meter GSD ortho imagery rectified to within +/- 10 meters of reference DOQQs. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP quarter quadrangle tiles that cover a county. MrSID compression, with mosaic option, was used. Target values for the compression ratio are (50:1) and compression levels(9) are used.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2010

National Agriculture Imagery Program (NAIP) 2010 for Pennsylvania - 4 Band TIFFs

4 Band TIFFs - This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 3 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP); and, 2 meter GSD ortho imagery rectified to within +/- 10 meters of reference DOQQs. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP quarter quadrangle tiles that cover a county. MrSID compression, with mosaic option, was used. Target values for the compression ratio are (50:1) and compression levels(9) are used.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2010

National Agriculture Imagery Program (NAIP) 2010 for Pennsylvania - Tile Index

Tile Index for National Agriculture Imagery Program (NAIP) 2010. NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 3 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP); and, 2 meter GSD ortho imagery rectified to within +/- 10 meters of reference DOQQs. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP quarter quadrangle tiles that cover a county. MrSID compression, with mosaic option, was used. Target values for the compression ratio are (50:1) and compression levels(9) are used.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2013

National Agriculture Imagery Program (NAIP) 2013 for Pennsylvania

Tile Index for National Agriculture Imagery Program (NAIP) 2010. NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 3 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP); and, 2 meter GSD ortho imagery rectified to within +/- 10 meters of reference DOQQs. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP quarter quadrangle tiles that cover a county. MrSID compression, with mosaic option, was used. Target values for the compression ratio are (50:1) and compression levels(9) are used.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2013

National Agriculture Imagery Program (NAIP) 2013 for Pennsylvania - Tile Index

Tile Index - This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. The NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. The NAIP imagery is formatted to the UTM coordinate system using the North American Datum of 1983 (NAD83). The NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP imagery that cover the county extent. Two types of compression may be used for NAIP imagery: MrSID and JPEG 2000. Target value for the compression ratio is (15:1).

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2015

National Agriculture Imagery Program (NAIP) 2015 for Pennsylvania

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. The NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. The NAIP imagery is formatted to the UTM coordinate system using the North American Datum of 1983 (NAD83). The NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP imagery that cover the county extent. Two types of compression may be used for NAIP imagery: MrSID and JPEG 2000. Target value for the compression ratio is (15:1).

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2015

National Agriculture Imagery Program (NAIP) 2015 for Pennsylvania - County Mosaics

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. The NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. The NAIP imagery is formatted to the UTM coordinate system using the North American Datum of 1983 (NAD83). The NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP imagery that cover the county extent. Two types of compression may be used for NAIP imagery: MrSID and JPEG 2000. Target value for the compression ratio is (15:1).

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2015

National Agriculture Imagery Program (NAIP) 2015 for Pennsylvania - Tile Index

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. The NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. The NAIP imagery is formatted to the UTM coordinate system using the North American Datum of 1983 (NAD83). The NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP imagery that cover the county extent. Two types of compression may be used for NAIP imagery: MrSID and JPEG 2000. Target value for the compression ratio is (15:1).

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2017

National Agriculture Imagery Program (NAIP) 2017 for Pennsylvania

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. The NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. The NAIP imagery is formatted to the UTM coordinate system using the North American Datum of 1983 (NAD83). The NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP imagery that cover the county extent. Two types of compression may be used for NAIP imagery: MrSID and JPEG 2000. Target value for the compression ratio is (15:1).

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2017

National Agriculture Imagery Program (NAIP) 2017 for Pennsylvania - Tile Index

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. The NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. The NAIP imagery is formatted to the UTM coordinate system using the North American Datum of 1983 (NAD83). The NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP imagery that cover the county extent. Two types of compression may be used for NAIP imagery: MrSID and JPEG 2000. Target value for the compression ratio is (15:1).

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2019

National Agriculture Imagery Program (NAIP) 2019 for Pennsylvania

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively and efficiently to increase food security. The NAIP program supports these goals by acquiring and providing ortho imagery that has been collected during the agricultural growing season in the U.S. The NAIP ortho imagery is tailored to meet FSA requirements and is a fundamental tool used to support FSA farm and conservation programs. Ortho imagery provides an effective, intuitive means of communication about farm program administration between FSA and stakeholders. New technology and innovation is identified by fostering and maintaining a relationship with vendors and government partners, and by keeping pace with the broader geospatial community. As a result of these efforts the NAIP program provides three main products: DOQQ tiles, Compressed County Mosaics (CCM), and Seamline shape files. The Contract specifications for NAIP imagery have changed over time reflecting agency requirements and improving technologies. These changes include image resolution, horizontal accuracy, coverage area, and number of bands. In general, flying seasons are established by FSA and are targeted for peak crop growing conditions. The NAIP acquisition cycle is based on a minimum 3 year refresh of base ortho imagery. The tiling format of the NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 pixel buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using the North American Datum of 1983. NAIP imagery may contain as much as 10% cloud cover per tile.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2019

National Agriculture Imagery Program (NAIP) 2019 for Pennsylvania - Tile Index

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively and efficiently to increase food security. The NAIP program supports these goals by acquiring and providing ortho imagery that has been collected during the agricultural growing season in the U.S. The NAIP ortho imagery is tailored to meet FSA requirements and is a fundamental tool used to support FSA farm and conservation programs. Ortho imagery provides an effective, intuitive means of communication about farm program administration between FSA and stakeholders. New technology and innovation is identified by fostering and maintaining a relationship with vendors and government partners, and by keeping pace with the broader geospatial community. As a result of these efforts the NAIP program provides three main products: DOQQ tiles, Compressed County Mosaics (CCM), and Seamline shape files. The Contract specifications for NAIP imagery have changed over time reflecting agency requirements and improving technologies. These changes include image resolution, horizontal accuracy, coverage area, and number of bands. In general, flying seasons are established by FSA and are targeted for peak crop growing conditions. The NAIP acquisition cycle is based on a minimum 3 year refresh of base ortho imagery. The tiling format of the NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 pixel buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using the North American Datum of 1983. NAIP imagery may contain as much as 10% cloud cover per tile.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2019

National Agriculture Imagery Program (NAIP) 2019 for Pennsylvania- County Mosaics

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively and efficiently to increase food security. The NAIP program supports these goals by acquiring and providing ortho imagery that has been collected during the agricultural growing season in the U.S. The NAIP ortho imagery is tailored to meet FSA requirements and is a fundamental tool used to support FSA farm and conservation programs. Ortho imagery provides an effective, intuitive means of communication about farm program administration between FSA and stakeholders. New technology and innovation is identified by fostering and maintaining a relationship with vendors and government partners, and by keeping pace with the broader geospatial community. As a result of these efforts the NAIP program provides three main products: DOQQ tiles, Compressed County Mosaics (CCM), and Seamline shape files. The Contract specifications for NAIP imagery have changed over time reflecting agency requirements and improving technologies. These changes include image resolution, horizontal accuracy, coverage area, and number of bands. In general, flying seasons are established by FSA and are targeted for peak crop growing conditions. The NAIP acquisition cycle is based on a minimum 3 year refresh of base ortho imagery. The tiling format of the NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 pixel buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using the North American Datum of 1983. NAIP imagery may contain as much as 10% cloud cover per tile.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2022

National Agriculture Imagery Program (NAIP) 2022 for Pennsylvania

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively and efficiently to increase food security. The NAIP program supports these goals by acquiring and providing ortho imagery that has been collected during the agricultural growing season in the U.S. The NAIP ortho imagery is tailored to meet FSA requirements and is a fundamental tool used to support FSA farm and conservation programs. Ortho imagery provides an effective, intuitive means of communication about farm program administration between FSA and stakeholders. New technology and innovation is identified by fostering and maintaining a relationship with vendors and government partners, and by keeping pace with the broader geospatial community. As a result of these efforts the NAIP program provides three main products: DOQQ tiles, Compressed County Mosaics (CCM), and Seamline shape files. The Contract specifications for NAIP imagery have changed over time reflecting agency requirements and improving technologies. These changes include image resolution, horizontal accuracy, coverage area, and number of bands. In general, flying seasons are established by FSA and are targeted for peak crop growing conditions. The NAIP acquisition cycle is based on a minimum 3 year refresh of base ortho imagery. The tiling format of the NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 pixel buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using the North American Datum of 1983. NAIP imagery may contain as much as 10% cloud cover per tile.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2022

National Agriculture Imagery Program (NAIP) 2022 for Pennsylvania- County Mosaics

This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively and efficiently to increase food security. The NAIP program supports these goals by acquiring and providing ortho imagery that has been collected during the agricultural growing season in the U.S. The NAIP ortho imagery is tailored to meet FSA requirements and is a fundamental tool used to support FSA farm and conservation programs. Ortho imagery provides an effective, intuitive means of communication about farm program administration between FSA and stakeholders. New technology and innovation is identified by fostering and maintaining a relationship with vendors and government partners, and by keeping pace with the broader geospatial community. As a result of these efforts the NAIP program provides three main products: DOQQ tiles, Compressed County Mosaics (CCM), and Seamline shape files. The Contract specifications for NAIP imagery have changed over time reflecting agency requirements and improving technologies. These changes include image resolution, horizontal accuracy, coverage area, and number of bands. In general, flying seasons are established by FSA and are targeted for peak crop growing conditions. The NAIP acquisition cycle is based on a minimum 3 year refresh of base ortho imagery. The tiling format of the NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 pixel buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using the North American Datum of 1983. NAIP imagery may contain as much as 10% cloud cover per tile.

Metadata | Download | More Options...

U S Department of Agriculture
2022

National Agriculture Imagery Program (NAIP) 2022 for Pennsylvania- Tile Index

Tile Index - This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are, increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively and efficiently to increase food security. The NAIP program supports these goals by acquiring and providing ortho imagery that has been collected during the agricultural growing season in the U.S. The NAIP ortho imagery is tailored to meet FSA requirements and is a fundamental tool used to support FSA farm and conservation programs. Ortho imagery provides an effective, intuitive means of communication about farm program administration between FSA and stakeholders. New technology and innovation is identified by fostering and maintaining a relationship with vendors and government partners, and by keeping pace with the broader geospatial community. As a result of these efforts the NAIP program provides three main products: DOQQ tiles, Compressed County Mosaics (CCM), and Seamline shape files. The Contract specifications for NAIP imagery have changed over time reflecting agency requirements and improving technologies. These changes include image resolution, horizontal accuracy, coverage area, and number of bands. In general, flying seasons are established by FSA and are targeted for peak crop growing conditions. The NAIP acquisition cycle is based on a minimum 3 year refresh of base ortho imagery. The tiling format of the NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 pixel buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using the North American Datum of 1983. NAIP imagery may contain as much as 10% cloud cover per tile.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Department of Agriculture
2009

National Agriculture Imagery Program (NAIP) for Delaware - County Mosaics

This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified to within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP quarter quadrangle tiles that cover a county. Two types of compression may be used for 2008 NAIP imagery: MrSID and JPEG 2000. Target values for the compression ratio are (15:1).

Metadata | Download | More Options...

U S Department of Agriculture
2009

National Agriculture Imagery Program (NAIP) for Maryland - County Mosaics

This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified to within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP quarter quadrangle tiles that cover a county. Two types of compression may be used for 2008 NAIP imagery: MrSID and JPEG 2000. Target values for the compression ratio are (15:1).

Metadata | Download | More Options...

U S Department of Agriculture
2009

National Agriculture Imagery Program (NAIP) for New York - County Mosaics

This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified to within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP quarter quadrangle tiles that cover a county. Two types of compression may be used for 2008 NAIP imagery: MrSID and JPEG 2000. Target values for the compression ratio are (15:1).

Metadata | Download | More Options...

U S Department of Agriculture
2009

National Agriculture Imagery Program (NAIP) for Virginia - County Mosaics

This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified to within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP quarter quadrangle tiles that cover a county. Two types of compression may be used for 2008 NAIP imagery: MrSID and JPEG 2000. Target values for the compression ratio are (15:1).

Metadata | Download | More Options...

U S Department of Agriculture
2009

National Agriculture Imagery Program (NAIP) for West Virginia - County Mosaics

This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S.. A primary goal of the NAIP program is to enable availability of ortho imagery within one year of acquisition. NAIP provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 5 meters of reference digital ortho quarter quads (DOQQ's) from the National Digital Ortho Program (NDOP) or from the National Agriculture Imagery Program (NAIP); 1 meter GSD ortho imagery rectified to within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 300 meter buffer on all four sides. NAIP quarter quads are formatted to the UTM coordinate system using NAD83. NAIP imagery may contain as much as 10% cloud cover per tile. This file was generated by compressing NAIP quarter quadrangle tiles that cover a county. Two types of compression may be used for 2008 NAIP imagery: MrSID and JPEG 2000. Target values for the compression ratio are (15:1).

Metadata | Download | More Options...

U S Department of Agriculture
1993

Digital Orthophoto Quarter Quadrangle images for Pennsylvania

Orthophotos combine the image characteristics of a photograph with the geometric qualities of a map. The primary digital orthophotoquad (DOQ) is a 1-meter ground resolution, quarter-quadrangle (3.75-minutes of latitude by 3.75-minutes of longitude) image cast on the Universal Transverse Mercator Projection (UTM) on the North American Datum of 1983 (NAD83).The geographic extent of the DOQ is equivalent to a quarter-quad plus The overedge ranges a minimum of 50 meters to a maximum of 300 meters beyond the extremes of the primary and secondary corner points. The overedge is included to facilitate tonal matching for mosaicking and for the placement of the NAD83 and secondary datum corner ticks. The normal orientation of data is by lines (rows) and samples (columns). Each line contains a series of pixels ordered from west to east with the order of the lines from north to south. The standard, archived digital orthophoto is formatted as four ASCII header records, followed by a series of 8-bit binary image data records. The radiometric image brightness values are stored as 256 gray levels ranging from 0 to 255. The metadata embedded in the digital orthophoto contain a wide range of descriptive information including format source information, production instrumentation and dates, and data to assist with displaying and georeferencing the image. DOQ images are acquired as a part of the USGS' National Aerial Photography Program (NAPP). Through NAPP imagery for each state is produced on a 7 year cycle. These images are the NAPP III cycle which will run from 1997-2001 These DOQQ's are distributed through PASDA as GeoTIFF images as received from USGS.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
1999

Digital Orthophoto Quarter Quadrangle images for Pennsylvania

Orthophotos combine the image characteristics of a photograph with the geometric qualities of a map. The primary digital orthophotoquad (DOQ) is a 1-meter ground resolution, quarter-quadrangle (3.75-minutes of latitude by 3.75-minutes of longitude) image cast on the Universal Transverse Mercator Projection (UTM) on the North American Datum of 1983 (NAD83).The geographic extent of the DOQ is equivalent to a quarter-quad plus The overedge ranges a minimum of 50 meters to a maximum of 300 meters beyond the extremes of the primary and secondary corner points. The overedge is included to facilitate tonal matching for mosaicking and for the placement of the NAD83 and secondary datum corner ticks. The normal orientation of data is by lines (rows) and samples (columns). Each line contains a series of pixels ordered from west to east with the order of the lines from north to south. The standard, archived digital orthophoto is formatted as four ASCII header records, followed by a series of 8-bit binary image data records. The radiometric image brightness values are stored as 256 gray levels ranging from 0 to 255. The metadata embedded in the digital orthophoto contain a wide range of descriptive information including format source information, production instrumentation and dates, and data to assist with displaying and georeferencing the image. DOQ images are acquired as a part of the USGS' National Aerial Photography Program (NAPP). Through NAPP imagery for each state is produced on a 7 year cycle. These images are the NAPP III cycle which will run from 1997-2001 These DOQQ's are distributed through PASDA as GeoTIFF images as received from USGS.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2015

MD/PA Sandy LiDAR - intensity images

This data will assist in the evaluation of coastal storm damage impacts; aid in post-event reconstruction and mitigation planning for future events and collect LiDAR for counties heavily impacted by storm and flooding for which data is incomplete or inadequate to conduct proper analysis, as part of USGS Hurricane Sandy response.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2015

MD/PA Sandy LiDAR - las

This data will assist in the evaluation of coastal storm damage impacts; aid in post-event reconstruction and mitigation planning for future events and collect LiDAR for counties heavily impacted by storm and flooding for which data is incomplete or inadequate to conduct proper analysis, as part of USGS Hurricane Sandy response.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2015

MD/PA Sandy LiDAR- DEMs

This data will assist in the evaluation of coastal storm damage impacts; aid in post-event reconstruction and mitigation planning for future events and collect LiDAR for counties heavily impacted by storm and flooding for which data is incomplete or inadequate to conduct proper analysis, as part of USGS Hurricane Sandy response.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2015

NJ/PA Sandy LiDAR - intensity images

This data will assist in the evaluation of coastal storm damage impacts; aid in post-event reconstruction and mitigation planning for future events and collect LiDAR for counties heavily impacted by storm and flooding for which data is incomplete or inadequate to conduct proper analysis, as part of USGS Hurricane Sandy response.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2015

NJ/PA Sandy LiDAR - las

This data will assist in the evaluation of coastal storm damage impacts; aid in post-event reconstruction and mitigation planning for future events and collect LiDAR for counties heavily impacted by storm and flooding for which data is incomplete or inadequate to conduct proper analysis, as part of USGS Hurricane Sandy response.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2015

NJ/PA Sandy LiDAR- DEMs

This data will assist in the evaluation of coastal storm damage impacts; aid in post-event reconstruction and mitigation planning for future events and collect LiDAR for counties heavily impacted by storm and flooding for which data is incomplete or inadequate to conduct proper analysis, as part of USGS Hurricane Sandy response.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2009

U.S. Geological Survey High Resolution Orthoimagery for Erie, Pennsylvania

One foot GSD, natural color (RGB), 8-bit digital orthophotography for the City of Erie, Pennsylvania. The imagery was collected using the Leica Geosystems ADS40 sensor between April 27th and June 6th, 2009 at an average altitude of 9,600 feet above ground level. The National Elevation Dataset (NED) was used as vertical control. Airborne GPS/IMU data was used as horizontal control. The orthophotography is georeferenced to UTM Zone 17 North, meter units, NAD83, NAVD88. The imagery was produced by Pixxures, Inc. under contract for DigitalGlobe, Inc." Data received at EROS were reprojected from 1-foot Pennsylvania 3-band, State Plane to 3-band, 0.30 meter UTM Zone 17 and resampled to align to the USNG using the USGS Seamless system. The naming convention is based on the U.S. National Grid (USNG), taking the coordinates of the SW corner of the orthoimage. The metadata were imported and updated for display through The National Map Seamless Server at Chip-level metadata are provided in XML format.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2009

U.S. Geological Survey High Resolution Orthoimagery for Erie, Pennsylvania - Tile Index

TILE INDEX - One foot GSD, natural color (RGB), 8-bit digital orthophotography for the City of Erie, Pennsylvania. The imagery was collected using the Leica Geosystems ADS40 sensor between April 27th and June 6th, 2009 at an average altitude of 9,600 feet above ground level. The National Elevation Dataset (NED) was used as vertical control. Airborne GPS/IMU data was used as horizontal control. The orthophotography is georeferenced to UTM Zone 17 North, meter units, NAD83, NAVD88. The imagery was produced by Pixxures, Inc. under contract for DigitalGlobe, Inc." Data received at EROS were reprojected from 1-foot Pennsylvania 3-band, State Plane to 3-band, 0.30 meter UTM Zone 17 and resampled to align to the USNG using the USGS Seamless system. The naming convention is based on the U.S. National Grid (USNG), taking the coordinates of the SW corner of the orthoimage. The metadata were imported and updated for display through The National Map Seamless Server at Chip-level metadata are provided in XML format.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2009

U.S. Geological Survey High Resolution Orthoimagery for Pittsburgh, Pennsylvania

One foot GSD, natural color (RGB), 8-bit digital orthophotography for the City of PIttsburgh, Pennsylvania. The imagery was collected using the Leica Geosystems ADS40 sensor between April 26th and July 8th, 2009 at an average altitude of 9,600 feet above ground level. The National Elevation Dataset (NED) was used as vertical control. Airborne GPS/IMU data was used as horizontal control. The orthophotography is georeferenced to UTM Zone 17 North, meter units, NAD83, NAVD88. The imagery was produced by Pixxures, Inc. under contract for DigitalGlobe, Inc." Data received at EROS were reprojected from 1-foot Pennsylvania 3-band, State Plane to 3-band, 0.30 meter UTM Zone 17 and resampled to align to the USNG using the USGS Seamless system. The naming convention is based on the U.S. National Grid (USNG), taking the coordinates of the SW corner of the orthoimage. The metadata were imported and updated for display through The National Map Seamless Server at Chip-level metadata are provided in XML format.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2012

U.S. Geological Survey High Resolution Orthoimagery for Pittsburgh, Pennsylvania

"This task order consists of digital orthophoto production covering the Pittsburgh Area, Pennsylvania." An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. There is no image overlap between adjacent files. Data received at Earth Resources Observation and Science Center (EROS) were verified as: Projection: NAD_1983_UTM_Zone_17N Resolution: 0.3000 m Type: Natural Color and resampled to align to the U.S. National Grid (USNG) using The National Map. The naming convention is based on the U.S. National Grid (USNG), taking the coordinates of the SW corner of the orthoimage. The metadata were imported and updated for display through The National Map at http://nationalmap.gov/viewer.html Chip-level metadata are provided in HTML and XML format. Data were compressed utilizing IAS software. The compression was JPEG2000 Lossy Compressed. The file format created was .jp2.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2009

U.S. Geological Survey High Resolution Orthoimagery for Pittsburgh, Pennsylvania - Tile Index

TILE INDEX - One foot GSD, natural color (RGB), 8-bit digital orthophotography for the City of PIttsburgh, Pennsylvania. The imagery was collected using the Leica Geosystems ADS40 sensor between April 26th and July 8th, 2009 at an average altitude of 9,600 feet above ground level. The National Elevation Dataset (NED) was used as vertical control. Airborne GPS/IMU data was used as horizontal control. The orthophotography is georeferenced to UTM Zone 17 North, meter units, NAD83, NAVD88. The imagery was produced by Pixxures, Inc. under contract for DigitalGlobe, Inc." Data received at EROS were reprojected from 1-foot Pennsylvania 3-band, State Plane to 3-band, 0.30 meter UTM Zone 17 and resampled to align to the USNG using the USGS Seamless system. The naming convention is based on the U.S. National Grid (USNG), taking the coordinates of the SW corner of the orthoimage. The metadata were imported and updated for display through The National Map Seamless Server at Chip-level metadata are provided in XML format.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2012

U.S. Geological Survey High Resolution Orthoimagery for Pittsburgh, Pennsylvania - Tile Index

TILE INDEX -"This task order consists of digital orthophoto production covering the Pittsburgh Area, Pennsylvania." An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. There is no image overlap between adjacent files. Data received at Earth Resources Observation and Science Center (EROS) were verified as: Projection: NAD_1983_UTM_Zone_17N Resolution: 0.3000 m Type: Natural Color and resampled to align to the U.S. National Grid (USNG) using The National Map. The naming convention is based on the U.S. National Grid (USNG), taking the coordinates of the SW corner of the orthoimage. The metadata were imported and updated for display through The National Map at http://nationalmap.gov/viewer.html Chip-level metadata are provided in HTML and XML format. Data were compressed utilizing IAS software. The compression was JPEG2000 Lossy Compressed. The file format created was .jp2.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2023

USGS 3DHP Raystown HUC 02050302

This dataset is Elevation-derived hydrography (EDH) for the 140G00221F0093-PA_EDHL_Raystown_2021_D21 project covering HU 02050302 - Upper Juniata Watershed. The hydrography layer contains line features representing stream rivers and polygons representing waterbody. The EDH was derived from light detection and ranging (lidar) derived Digital Elevation Model of 1m, flown as part of 3 different projects between November 2017 and March 2020. This dataset was created to meet the requirements of the USGS Elevation-derived hydrography specification, https://www.usgs.gov/core-science-systems/ngp/ss/elevation-derived-hydrography-specifications. The line features contain Elevation class (EClass) codes useful for hydro-enforcement, including culvert identification. Feature Class (FCLASS) and Feature codes (FCodes) are hydrography codes compatible with the National Hydrography Dataset (NHD). The EDH product should be suitable for pre-conflation to the NHD.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2023

USGS 3DHP Raystown HUC 02050303

This dataset is Elevation-derived hydrography (EDH) for the 140G00221F0093-PA_EDHL_Raystown_2021_D21 project covering HU 02050303 - Raystown Watershed. The hydrography layer contains line features representing stream rivers and polygons representing waterbody. The EDH was derived from light detection and ranging (lidar) derived Digital Elevation Model of 1m, flown as part of 3 different projects between November 2017 and March 2020. This dataset was created to meet the requirements of the USGS Elevation-derived hydrography specification, https://www.usgs.gov/core-science-systems/ngp/ss/elevation-derived-hydrography-specifications. The line features contain Elevation class (EClass) codes useful for hydro-enforcement, including culvert identification. Feature Class (FCLASS) and Feature codes (FCodes) are hydrography codes compatible with the National Hydrography Dataset (NHD). The EDH product should be suitable for pre-conflation to the NHD.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2023

USGS 3DHP Raystown HUC 02050304

This dataset is Elevation-derived hydrography (EDH) for the 140G00221F0093-PA_EDHL_Raystown_2021_D21 project covering HU 02050304 - Lower Juniata Watershed. The hydrography layer contains line features representing stream rivers and polygons representing waterbody. The EDH was derived from light detection and ranging (lidar) derived Digital Elevation Model of 1m, flown as part of 3 different projects between November 2017 and March 2020. This dataset was created to meet the requirements of the USGS Elevation-derived hydrography specification, https://www.usgs.gov/core-science-systems/ngp/ss/elevation-derived-hydrography-specifications. The line features contain Elevation class (EClass) codes useful for hydro-enforcement, including culvert identification. Feature Class (FCLASS) and Feature codes (FCodes) are hydrography codes compatible with the National Hydrography Dataset (NHD). The EDH product should be suitable for pre-conflation to the NHD.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2005

USGS High Resolution Orthoimage for Mercer County, Pennsylvania

This data set consists of 0.3-meter pixel resolution (approximately 1-foot), natural color orthoimages covering Mercer County, Pennsylvania. An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. The design accuracy is estimated not to exceed 3-meter diagonal RMSE (2.12m RMSE in X or Y).

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2005

USGS High Resolution Orthoimage for Mercer County, Pennsylvania - Tile Index

This data set consists of 0.3-meter pixel resolution (approximately 1-foot), natural color orthoimages covering Mercer County, Pennsylvania. An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. The design accuracy is estimated not to exceed 3-meter diagonal RMSE (2.12m RMSE in X or Y).

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2005

USGS High Resolution Orthoimage for Pittsburgh, PA (Allegheny and Beaver Counties)

This data set consists of 0.3-meter pixel resolution (approximately 1-foot), natural color orthoimages covering the Pittsburgh, PA Urban Area (Allegheny and Beaver Counties. An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. The design accuracy is estimated not to exceed 3-meter diagonal RMSE (2.12m RMSE in X or Y).

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2005

USGS High Resolution Orthoimage for Pittsburgh, PA (Allegheny and Beaver Counties) - Tile Index

Tile Index - This data set consists of 0.3-meter pixel resolution (approximately 1-foot), natural color orthoimages covering the Pittsburgh, PA Urban Area (Allegheny and Beaver Counties. An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. The design accuracy is estimated not to exceed 3-meter diagonal RMSE (2.12m RMSE in X or Y).

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2011

USGS High Resolution Orthoimagery for Harrisburg, Pennsylvania

"This task order consists of digital orthophoto production covering the Pittsburgh Area, Pennsylvania." An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. There is no image overlap between adjacent files. Data received at Earth Resources Observation and Science Center (EROS) were verified as: Projection: NAD_1983_UTM_Zone_17N Resolution: 0.3000 m Type: Natural Color and resampled to align to the U.S. National Grid (USNG) using The National Map. The naming convention is based on the U.S. National Grid (USNG), taking the coordinates of the SW corner of the orthoimage. The metadata were imported and updated for display through The National Map at http://nationalmap.gov/viewer.html Chip-level metadata are provided in HTML and XML format. Data were compressed utilizing IAS software. The compression was JPEG2000 Lossy Compressed. The file format created was .jp2.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2011

USGS High Resolution Orthoimagery for Harrisburg, Pennsylvania - Tile Index

TILE INDEX -"This task order consists of digital orthophoto production covering the Pittsburgh Area, Pennsylvania." An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. There is no image overlap between adjacent files. Data received at Earth Resources Observation and Science Center (EROS) were verified as: Projection: NAD_1983_UTM_Zone_17N Resolution: 0.3000 m Type: Natural Color and resampled to align to the U.S. National Grid (USNG) using The National Map. The naming convention is based on the U.S. National Grid (USNG), taking the coordinates of the SW corner of the orthoimage. The metadata were imported and updated for display through The National Map at http://nationalmap.gov/viewer.html Chip-level metadata are provided in HTML and XML format. Data were compressed utilizing IAS software. The compression was JPEG2000 Lossy Compressed. The file format created was .jp2.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2012

USGS High Resolution Orthoimagery for Scranton - Wilkes Barre, Pennsylvania

"This task order consists of digital orthophoto production covering the Pittsburgh Area, Pennsylvania." An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. There is no image overlap between adjacent files. Data received at Earth Resources Observation and Science Center (EROS) were verified as: Projection: NAD_1983_UTM_Zone_17N Resolution: 0.3000 m Type: Natural Color and resampled to align to the U.S. National Grid (USNG) using The National Map. The naming convention is based on the U.S. National Grid (USNG), taking the coordinates of the SW corner of the orthoimage. The metadata were imported and updated for display through The National Map at http://nationalmap.gov/viewer.html Chip-level metadata are provided in HTML and XML format. Data were compressed utilizing IAS software. The compression was JPEG2000 Lossy Compressed. The file format created was .jp2.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2012

USGS High Resolution Orthoimagery for Scranton - Wilkes Barre, Pennsylvania - Tile Index

TILE INDEX -"This task order consists of digital orthophoto production covering the Pittsburgh Area, Pennsylvania." An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. There is no image overlap between adjacent files. Data received at Earth Resources Observation and Science Center (EROS) were verified as: Projection: NAD_1983_UTM_Zone_17N Resolution: 0.3000 m Type: Natural Color and resampled to align to the U.S. National Grid (USNG) using The National Map. The naming convention is based on the U.S. National Grid (USNG), taking the coordinates of the SW corner of the orthoimage. The metadata were imported and updated for display through The National Map at http://nationalmap.gov/viewer.html Chip-level metadata are provided in HTML and XML format. Data were compressed utilizing IAS software. The compression was JPEG2000 Lossy Compressed. The file format created was .jp2.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2009

USGS High Resolution State Orthoimagery for New Castle, Pennsylvania

One foot GSD, natural color (RGB), 8-bit digital orthophotography for the City of New Castle, Pennsylvania. The imagery was collected using the Leica Geosystems ADS40 sensor between October 19th and November 2nd, 2009 at an average altitude of 9,600 feet above ground level. The National Elevation Dataset (NED) was used as vertical control. Airborne GPS/IMU data was used as horizontal control. The orthophotography is georeferenced to UTM Zone 17 North, meter units, NAD83, NAVD88. The imagery was produced by Pixxures, Inc. under contract for DigitalGlobe, Inc." An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. There is no image overlap between adjacent files. Data received at EROS as: Projection: NAD_1983_UTM_Zone_17N Resolution: 0.3 meter Type: Natural Color and chipped to the Standard Product as: Standard Product Projection: NAD_1983_UTM_Zone_17N Standard Product Resolution: 0.3000 m Rows: 5,000 Columns: 5,000.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2009

USGS High Resolution State Orthoimagery for New Castle, Pennsylvania - Tile Index

TILE INDEX - One foot GSD, natural color (RGB), 8-bit digital orthophotography for the City of New Castle, Pennsylvania. The imagery was collected using the Leica Geosystems ADS40 sensor between October 19th and November 2nd, 2009 at an average altitude of 9,600 feet above ground level. The National Elevation Dataset (NED) was used as vertical control. Airborne GPS/IMU data was used as horizontal control. The orthophotography is georeferenced to UTM Zone 17 North, meter units, NAD83, NAVD88. The imagery was produced by Pixxures, Inc. under contract for DigitalGlobe, Inc." An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. There is no image overlap between adjacent files. Data received at EROS as: Projection: NAD_1983_UTM_Zone_17N Resolution: 0.3 meter Type: Natural Color and chipped to the Standard Product as: Standard Product Projection: NAD_1983_UTM_Zone_17N Standard Product Resolution: 0.3000 m Rows: 5,000 Columns: 5,000.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

U S Geological Survey
2016

USGS QL1 Orthophotos for Allentown, PA 2016 - Tiles

Allentown, Pennsylvania, covering approximately 20 square miles in eastern Pennsylvania. Dataset Description: Allentown, Pennsylvania 2016 QL1 LiDAR project called for the planning, acquisition, processing, and production of products derivative of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.35 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet and vertical datum of NAVD1988 (GEOID 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 129 individual 2,500-foot X 2,500-foot tiles, 1-foot hydro-flattened bare-earth raster DEMs in ERDAS .IMG format and intensity images in GeoTIFF format, tiled to the same 2,500-foot X 2,500-foot tile schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. A mosaic of the hydro-flattened bare-earth raster DEMs was produced in ERDAS .IMG format. Ground Conditions: LiDAR was collected in spring of 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, A total of 18 calibration control points in order to calibrate the LIDAR to known ground locations established throughout the project area. The accuracy of the data was checked with 20 NVA points and 5 VVA points (25 total QC checkpoints).

Metadata | Download | Preview | KMZ | Spreadsheet | GeoJSON | Add to ArcMap: Image | More Options...

U S Geological Survey
2016

USGS QL1 Orthophotos for Allentown, PA 2016 - SID Mosaic

Allentown, Pennsylvania, covering approximately 20 square miles in eastern Pennsylvania. Dataset Description: Allentown, Pennsylvania 2016 QL1 LiDAR project called for the planning, acquisition, processing, and production of products derivative of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.35 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet and vertical datum of NAVD1988 (GEOID 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 129 individual 2,500-foot X 2,500-foot tiles, 1-foot hydro-flattened bare-earth raster DEMs in ERDAS .IMG format and intensity images in GeoTIFF format, tiled to the same 2,500-foot X 2,500-foot tile schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. A mosaic of the hydro-flattened bare-earth raster DEMs was produced in ERDAS .IMG format. Ground Conditions: LiDAR was collected in spring of 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, A total of 18 calibration control points in order to calibrate the LIDAR to known ground locations established throughout the project area. The accuracy of the data was checked with 20 NVA points and 5 VVA points (25 total QC checkpoints).

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

U S Geological Survey
2016

USGS QL1 Orthophotos for Allentown, PA 2016 - Tile Index

Tile Indexes - Allentown, Pennsylvania, covering approximately 20 square miles in eastern Pennsylvania. Dataset Description: Allentown, Pennsylvania 2016 QL1 LiDAR project called for the planning, acquisition, processing, and production of products derivative of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.35 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet and vertical datum of NAVD1988 (GEOID 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 129 individual 2,500-foot X 2,500-foot tiles, 1-foot hydro-flattened bare-earth raster DEMs in ERDAS .IMG format and intensity images in GeoTIFF format, tiled to the same 2,500-foot X 2,500-foot tile schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. A mosaic of the hydro-flattened bare-earth raster DEMs was produced in ERDAS .IMG format. Ground Conditions: LiDAR was collected in spring of 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, A total of 18 calibration control points in order to calibrate the LIDAR to known ground locations established throughout the project area. The accuracy of the data was checked with 20 NVA points and 5 VVA points (25 total QC checkpoints).

Metadata | Download | Preview | KMZ | Spreadsheet | GeoJSON | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Adams County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Berks County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Columbia County, PA 2018

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Cumberland County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2016

USGS QL2 LiDAR for Dauphin County, PA 2016 - Breaklines

The Dauphin County, PA 2016 QL2 LiDAR project called for the planning, acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet; NAVD1988 (Geoid 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 711 individual 5,000-foot x 5,000-foot tiles. Tile names use the following naming schema: "YYYYXXXXPAd" where YYYY is the first 3 characters of the tile's upper left corner Y-coordinate, XXXX - the first 4 characters of the tile's upper left corner X-coordinate, PA = Pennsylvania, and d = 'N' for North or 'S' for South. Corresponding 2.5-foot gridded hydro-flattened bare earth raster tiled DEM files and intensity image files were created using the same 5,000-foot x 5,000-foot schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. Continuous 2-foot contours were produced in Esri file geodatabase format. Ground Conditions: LiDAR collection began in Spring 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 84 control points (24 calibration control points and 60 QC checkpoints). These were used to calibrate the LIDAR to known ground locations established throughout the project area.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

U S Geological Survey
2016

USGS QL2 LiDAR for Dauphin County, PA 2016 - Contour

The Dauphin County, PA 2016 QL2 LiDAR project called for the planning, acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet; NAVD1988 (Geoid 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 711 individual 5,000-foot x 5,000-foot tiles. Tile names use the following naming schema: "YYYYXXXXPAd" where YYYY is the first 3 characters of the tile's upper left corner Y-coordinate, XXXX - the first 4 characters of the tile's upper left corner X-coordinate, PA = Pennsylvania, and d = 'N' for North or 'S' for South. Corresponding 2.5-foot gridded hydro-flattened bare earth raster tiled DEM files and intensity image files were created using the same 5,000-foot x 5,000-foot schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. Continuous 2-foot contours were produced in Esri file geodatabase format. Ground Conditions: LiDAR collection began in Spring 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 84 control points (24 calibration control points and 60 QC checkpoints). These were used to calibrate the LIDAR to known ground locations established throughout the project area.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

U S Geological Survey
2016

USGS QL2 LiDAR for Dauphin County, PA 2016 - DEM

The Dauphin County, PA 2016 QL2 LiDAR project called for the planning, acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet; NAVD1988 (Geoid 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 711 individual 5,000-foot x 5,000-foot tiles. Tile names use the following naming schema: "YYYYXXXXPAd" where YYYY is the first 3 characters of the tile's upper left corner Y-coordinate, XXXX - the first 4 characters of the tile's upper left corner X-coordinate, PA = Pennsylvania, and d = 'N' for North or 'S' for South. Corresponding 2.5-foot gridded hydro-flattened bare earth raster tiled DEM files and intensity image files were created using the same 5,000-foot x 5,000-foot schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. Continuous 2-foot contours were produced in Esri file geodatabase format. Ground Conditions: LiDAR collection began in Spring 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 84 control points (24 calibration control points and 60 QC checkpoints). These were used to calibrate the LIDAR to known ground locations established throughout the project area.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

U S Geological Survey
2016

USGS QL2 LiDAR for Dauphin County, PA 2016 - Intensity Images

The Dauphin County, PA 2016 QL2 LiDAR project called for the planning, acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet; NAVD1988 (Geoid 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 711 individual 5,000-foot x 5,000-foot tiles. Tile names use the following naming schema: "YYYYXXXXPAd" where YYYY is the first 3 characters of the tile's upper left corner Y-coordinate, XXXX - the first 4 characters of the tile's upper left corner X-coordinate, PA = Pennsylvania, and d = 'N' for North or 'S' for South. Corresponding 2.5-foot gridded hydro-flattened bare earth raster tiled DEM files and intensity image files were created using the same 5,000-foot x 5,000-foot schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. Continuous 2-foot contours were produced in Esri file geodatabase format. Ground Conditions: LiDAR collection began in Spring 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 84 control points (24 calibration control points and 60 QC checkpoints). These were used to calibrate the LIDAR to known ground locations established throughout the project area.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

U S Geological Survey
2016

USGS QL2 LiDAR for Dauphin County, PA 2016 - LAS

The Dauphin County, PA 2016 QL2 LiDAR project called for the planning, acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet; NAVD1988 (Geoid 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 711 individual 5,000-foot x 5,000-foot tiles. Tile names use the following naming schema: "YYYYXXXXPAd" where YYYY is the first 3 characters of the tile's upper left corner Y-coordinate, XXXX - the first 4 characters of the tile's upper left corner X-coordinate, PA = Pennsylvania, and d = 'N' for North or 'S' for South. Corresponding 2.5-foot gridded hydro-flattened bare earth raster tiled DEM files and intensity image files were created using the same 5,000-foot x 5,000-foot schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. Continuous 2-foot contours were produced in Esri file geodatabase format. Ground Conditions: LiDAR collection began in Spring 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 84 control points (24 calibration control points and 60 QC checkpoints). These were used to calibrate the LIDAR to known ground locations established throughout the project area.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

U S Geological Survey
2016

USGS QL2 LiDAR for Dauphin County, PA 2016 - Terrain

The Dauphin County, PA 2016 QL2 LiDAR project called for the planning, acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet; NAVD1988 (Geoid 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 711 individual 5,000-foot x 5,000-foot tiles. Tile names use the following naming schema: "YYYYXXXXPAd" where YYYY is the first 3 characters of the tile's upper left corner Y-coordinate, XXXX - the first 4 characters of the tile's upper left corner X-coordinate, PA = Pennsylvania, and d = 'N' for North or 'S' for South. Corresponding 2.5-foot gridded hydro-flattened bare earth raster tiled DEM files and intensity image files were created using the same 5,000-foot x 5,000-foot schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. Continuous 2-foot contours were produced in Esri file geodatabase format. Ground Conditions: LiDAR collection began in Spring 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 84 control points (24 calibration control points and 60 QC checkpoints). These were used to calibrate the LIDAR to known ground locations established throughout the project area.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

U S Geological Survey
2016

USGS QL2 LiDAR for Dauphin County, PA 2016 - Tile Index

The Dauphin County, PA 2016 QL2 LiDAR project called for the planning, acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet; NAVD1988 (Geoid 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 711 individual 5,000-foot x 5,000-foot tiles. Tile names use the following naming schema: "YYYYXXXXPAd" where YYYY is the first 3 characters of the tile's upper left corner Y-coordinate, XXXX - the first 4 characters of the tile's upper left corner X-coordinate, PA = Pennsylvania, and d = 'N' for North or 'S' for South. Corresponding 2.5-foot gridded hydro-flattened bare earth raster tiled DEM files and intensity image files were created using the same 5,000-foot x 5,000-foot schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. Continuous 2-foot contours were produced in Esri file geodatabase format. Ground Conditions: LiDAR collection began in Spring 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 84 control points (24 calibration control points and 60 QC checkpoints). These were used to calibrate the LIDAR to known ground locations established throughout the project area.

Metadata | Download | Preview | Add to ArcMap: Image or Feature | Add to ArcGIS Pro | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Franklin County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Juniata County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Lebanon County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Luzerne County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Lycoming County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Mifflin County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Montour County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Northumberland County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Perry County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Schuylkill County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Snyder County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Sullivan County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2017

USGS QL2 LiDAR for Union County, PA 2017

The South Central Pennsylvania 2017 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 18, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 7,975 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in fall 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 245 independent accuracy checkpoints, 142 in Bare Earth and Urban landcovers (142 NVA points), 103 in Tall Weeds categories (103 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

U S Geological Survey
2018

High-Resolution Land Cover, Commonwealth of Pennsylvania, Statewide, 2013

High-resolution land cover dataset for the Commonwealth of Pennsylvania. Twelve land cover classes were mapped:0 - Background1 - Water2 - Emergent Wetlands3 - Tree Canopy4 - Scrub/Shrub5 - Low Vegetation6 - Barren7 - Structures8 - Other Impervious Surfaces9 - Roads10 - Tree Canopy over Structures11 - Tree Canopy over Other Impervious Surfaces12 - Tree Canopy over RoadsThe complete class definitions and standards can be viewed at the link below.http://goo.gl/THacggThe primary sources used to derive this land-cover layer were 2006-2008 leaf-off LiDAR data, 2005-2008 leaf-off orthoimagery, and 2013 leaf-on orthoimagery. Ancillary data sources such as LiDAR-derived breaklines for roads and hydrology were used to augment the land-cover mapping. This land-cover dataset is considered current based on data of acquisition for the leaf-on orthoimagery. Land-cover class assignment was accomplished using a rule-based expert system embedded within an object-based framework. Object-based image analysis techniques (OBIA) work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. Following the automated OBIA mapping a detailed manual review of the dataset was carried out at a scale of 1:3000 and all observable errors were corrected.This dataset was developed to support land-cover mapping and modeling initiatives in Commonwealth of Pennsylvannia. At the time of its publication, it represented the most accurate and detailed land cover map for the state.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

University of Vermont Spatial Analysis Laboratory
2016

YCPC 2015 Digital Orthoimagery for York County, Pennsylvania

Multi-spectral digital orthophotography was produced at a scale of 1:2400 (1 in = 200 ft) with a 12 inch pixel resolution for the YCPC project area. Digital orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Orthophoto data is produced through the use of digitized perspective aerial photographs or other remotely sensed image data. This data is processed into a digital product that has been rectified for camera lens distortion, vertical displacement caused by terrain relief, and variations in aircraft altitude and orientation.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

York County Planning Commission
2016

YCPC 2015 Digital Orthoimagery for York County, Pennsylvania - County Mosaics

Multi-spectral digital orthophotography was produced at a scale of 1:2400 (1 in = 200 ft) with a 12 inch pixel resolution for the YCPC project area. Digital orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Orthophoto data is produced through the use of digitized perspective aerial photographs or other remotely sensed image data. This data is processed into a digital product that has been rectified for camera lens distortion, vertical displacement caused by terrain relief, and variations in aircraft altitude and orientation.

Metadata | Download | Preview | KMZ | Add to ArcMap: Image | More Options...

York County Planning Commission
2016

YCPC 2015 Digital Orthoimagery for York County, Pennsylvania- Tile Index

Multi-spectral digital orthophotography was produced at a scale of 1:2400 (1 in = 200 ft) with a 12 inch pixel resolution for the YCPC project area. Digital orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Orthophoto data is produced through the use of digitized perspective aerial photographs or other remotely sensed image data. This data is processed into a digital product that has been rectified for camera lens distortion, vertical displacement caused by terrain relief, and variations in aircraft altitude and orientation.

Metadata | Download | Preview | Add to ArcMap: Image | More Options...

York County Planning Commission